Answer
Verified
424.8k+ views
Hint: To solve the given question, we should know some of the trigonometric properties that are given below, we should know that sine and cosine are inverse of secant and cosecant function respectively, that is \[\sec \theta =\dfrac{1}{\cos \theta }\And \csc \theta =\dfrac{1}{\sin \theta }\]. Also, we should know the trigonometric identity relation between sine-cosine function, and secant-tangent functions,
\[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\And 1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta \].
Complete step by step answer:
The first statement we need to prove is, \[\sqrt{\dfrac{\sec \theta -1}{\sec \theta +1}}+\sqrt{\dfrac{\sec \theta +1}{\sec \theta -1}}=2cosec\theta \]. The LHS of the statement is \[\sqrt{\dfrac{\sec \theta -1}{\sec \theta +1}}+\sqrt{\dfrac{\sec \theta +1}{\sec \theta -1}}\], and the RHS is \[2cosec\theta \]. Multiplying the first term in the LHS by \[\sqrt{\dfrac{\sec \theta -1}{\sec \theta -1}}\], and the second term by \[\sqrt{\dfrac{\sec \theta +1}{\sec \theta +1}}\]. We get
\[\Rightarrow \sqrt{\dfrac{\sec \theta -1}{\sec \theta +1}}\sqrt{\dfrac{\sec \theta -1}{\sec \theta -1}}+\sqrt{\dfrac{\sec \theta +1}{\sec \theta -1}}\sqrt{\dfrac{\sec \theta +1}{\sec \theta +1}}\]
Simplifying the above expression, it can be written as
\[\Rightarrow \sqrt{\dfrac{{{\left( \sec \theta -1 \right)}^{2}}}{{{\left( \sec \theta \right)}^{2}}-{{\left( 1 \right)}^{2}}}}+\sqrt{\dfrac{{{\left( \sec \theta +1 \right)}^{2}}}{{{\left( \sec \theta \right)}^{2}}-{{\left( 1 \right)}^{2}}}}\]
Using the trigonometric identity, \[1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta \], the denominator of the above expression can be expressed as
\[\Rightarrow \sqrt{\dfrac{{{\left( \sec \theta -1 \right)}^{2}}}{{{\tan }^{2}}\theta }}+\sqrt{\dfrac{{{\left( \sec \theta +1 \right)}^{2}}}{{{\tan }^{2}}\theta }}\]
canceling out the power, we get
\[\Rightarrow \dfrac{\left( \sec \theta -1 \right)}{\tan \theta }+\dfrac{\left( \sec \theta +1 \right)}{\tan \theta }\]
As the denominator of both terms is the same, we can add the numerator directly, by doing this we get
\[\Rightarrow \dfrac{2\sec \theta }{\tan \theta }\]
We know that \[\sec \theta =\dfrac{1}{\cos \theta }\And \tan \theta =\dfrac{\sin \theta }{\cos \theta }\]. Using this, the above expression can be simplified as
\[\Rightarrow \dfrac{2}{\sin \theta }=2\csc \theta =RHS\]
\[\therefore LHS=RHS\]
Hence, proved.
The second statement to prove is \[\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }}+\sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}=2\sec \theta \]. The LHS of the statement is \[\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }}+\sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}\], and the RHS of the statement is \[2\sec \theta \].
Multiplying the first term in the LHS by \[\sqrt{\dfrac{1+\sin \theta }{1+\sin \theta }}\], and second term by \[\sqrt{\dfrac{1-\sin \theta }{1-\sin \theta }}\]. We get
\[\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }}\sqrt{\dfrac{1+\sin \theta }{1+\sin \theta }}+\sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}\sqrt{\dfrac{1-\sin \theta }{1-\sin \theta }}\]
Simplifying the above expression, we get
\[\Rightarrow \sqrt{\dfrac{{{\left( 1+\sin \theta \right)}^{2}}}{{{1}^{2}}-{{\sin }^{2}}\theta }}+\sqrt{\dfrac{{{\left( 1-\sin \theta \right)}^{2}}}{{{1}^{2}}-{{\sin }^{2}}\theta }}\]
Using the trigonometric identity, \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\], the denominator of the above expression can be expressed as
\[\Rightarrow \sqrt{\dfrac{{{\left( 1+\sin \theta \right)}^{2}}}{{{\cos }^{2}}\theta }}+\sqrt{\dfrac{{{\left( 1-\sin \theta \right)}^{2}}}{{{\cos }^{2}}\theta }}\]
canceling out the square and square root from the above expression, we get
\[\Rightarrow \dfrac{\left( 1+\sin \theta \right)}{\cos \theta }+\dfrac{\left( 1-\sin \theta \right)}{\cos \theta }\]
As the denominator of both terms is the same, we can add the numerator directly, by doing this we get
\[\Rightarrow \dfrac{2}{\cos \theta }\]
Using \[\sec \theta =\dfrac{1}{\cos \theta }\], the above expression can be written as
\[\Rightarrow 2\sec \theta =RHS\]
\[\therefore LHS=RHS\]
Hence, proved.
Note: To solve problems based on trigonometric functions, one should remember the trigonometric properties and the identities. The properties we used to prove the given statements are \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\And 1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta \], also \[\sec \theta =\dfrac{1}{\cos \theta }\And \csc \theta =\dfrac{1}{\sin \theta }\].
\[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\And 1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta \].
Complete step by step answer:
The first statement we need to prove is, \[\sqrt{\dfrac{\sec \theta -1}{\sec \theta +1}}+\sqrt{\dfrac{\sec \theta +1}{\sec \theta -1}}=2cosec\theta \]. The LHS of the statement is \[\sqrt{\dfrac{\sec \theta -1}{\sec \theta +1}}+\sqrt{\dfrac{\sec \theta +1}{\sec \theta -1}}\], and the RHS is \[2cosec\theta \]. Multiplying the first term in the LHS by \[\sqrt{\dfrac{\sec \theta -1}{\sec \theta -1}}\], and the second term by \[\sqrt{\dfrac{\sec \theta +1}{\sec \theta +1}}\]. We get
\[\Rightarrow \sqrt{\dfrac{\sec \theta -1}{\sec \theta +1}}\sqrt{\dfrac{\sec \theta -1}{\sec \theta -1}}+\sqrt{\dfrac{\sec \theta +1}{\sec \theta -1}}\sqrt{\dfrac{\sec \theta +1}{\sec \theta +1}}\]
Simplifying the above expression, it can be written as
\[\Rightarrow \sqrt{\dfrac{{{\left( \sec \theta -1 \right)}^{2}}}{{{\left( \sec \theta \right)}^{2}}-{{\left( 1 \right)}^{2}}}}+\sqrt{\dfrac{{{\left( \sec \theta +1 \right)}^{2}}}{{{\left( \sec \theta \right)}^{2}}-{{\left( 1 \right)}^{2}}}}\]
Using the trigonometric identity, \[1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta \], the denominator of the above expression can be expressed as
\[\Rightarrow \sqrt{\dfrac{{{\left( \sec \theta -1 \right)}^{2}}}{{{\tan }^{2}}\theta }}+\sqrt{\dfrac{{{\left( \sec \theta +1 \right)}^{2}}}{{{\tan }^{2}}\theta }}\]
canceling out the power, we get
\[\Rightarrow \dfrac{\left( \sec \theta -1 \right)}{\tan \theta }+\dfrac{\left( \sec \theta +1 \right)}{\tan \theta }\]
As the denominator of both terms is the same, we can add the numerator directly, by doing this we get
\[\Rightarrow \dfrac{2\sec \theta }{\tan \theta }\]
We know that \[\sec \theta =\dfrac{1}{\cos \theta }\And \tan \theta =\dfrac{\sin \theta }{\cos \theta }\]. Using this, the above expression can be simplified as
\[\Rightarrow \dfrac{2}{\sin \theta }=2\csc \theta =RHS\]
\[\therefore LHS=RHS\]
Hence, proved.
The second statement to prove is \[\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }}+\sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}=2\sec \theta \]. The LHS of the statement is \[\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }}+\sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}\], and the RHS of the statement is \[2\sec \theta \].
Multiplying the first term in the LHS by \[\sqrt{\dfrac{1+\sin \theta }{1+\sin \theta }}\], and second term by \[\sqrt{\dfrac{1-\sin \theta }{1-\sin \theta }}\]. We get
\[\sqrt{\dfrac{1+\sin \theta }{1-\sin \theta }}\sqrt{\dfrac{1+\sin \theta }{1+\sin \theta }}+\sqrt{\dfrac{1-\sin \theta }{1+\sin \theta }}\sqrt{\dfrac{1-\sin \theta }{1-\sin \theta }}\]
Simplifying the above expression, we get
\[\Rightarrow \sqrt{\dfrac{{{\left( 1+\sin \theta \right)}^{2}}}{{{1}^{2}}-{{\sin }^{2}}\theta }}+\sqrt{\dfrac{{{\left( 1-\sin \theta \right)}^{2}}}{{{1}^{2}}-{{\sin }^{2}}\theta }}\]
Using the trigonometric identity, \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\], the denominator of the above expression can be expressed as
\[\Rightarrow \sqrt{\dfrac{{{\left( 1+\sin \theta \right)}^{2}}}{{{\cos }^{2}}\theta }}+\sqrt{\dfrac{{{\left( 1-\sin \theta \right)}^{2}}}{{{\cos }^{2}}\theta }}\]
canceling out the square and square root from the above expression, we get
\[\Rightarrow \dfrac{\left( 1+\sin \theta \right)}{\cos \theta }+\dfrac{\left( 1-\sin \theta \right)}{\cos \theta }\]
As the denominator of both terms is the same, we can add the numerator directly, by doing this we get
\[\Rightarrow \dfrac{2}{\cos \theta }\]
Using \[\sec \theta =\dfrac{1}{\cos \theta }\], the above expression can be written as
\[\Rightarrow 2\sec \theta =RHS\]
\[\therefore LHS=RHS\]
Hence, proved.
Note: To solve problems based on trigonometric functions, one should remember the trigonometric properties and the identities. The properties we used to prove the given statements are \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\And 1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta \], also \[\sec \theta =\dfrac{1}{\cos \theta }\And \csc \theta =\dfrac{1}{\sin \theta }\].
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE