Answer
Verified
447.6k+ views
Hint: Here we use the property of trigonometry \[2\cos A\cos B = \cos (A + B) + \cos (A - B)\] to solve first part of the equation and then we group together two pairs of values in cos on which we apply the formula \[\cos A + \cos B = 2\cos (\dfrac{{A + B}}{2})\cos (\dfrac{{A - B}}{2})\].
Complete step-by-step answer:
First we solve \[2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}}\]by using the identity \[2\cos A\cos B = \cos (A + B) + \cos (A - B)\]
Where \[A = \dfrac{\pi }{{13}},B = \dfrac{{9\pi }}{{13}}\]
So, by substituting the values we can write.
\[ \Rightarrow 2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} = \cos (\dfrac{\pi }{{13}} + \dfrac{{9\pi }}{{13}}) + \cos (\dfrac{\pi }{{13}} - \dfrac{{9\pi }}{{13}})\]
Take LCM of the angles within the bracket.
\[
\Rightarrow 2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} = \cos (\dfrac{{\pi + 9\pi }}{{13}}) + \cos (\dfrac{{\pi - 9\pi }}{{13}}) \\
\Rightarrow 2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} = \cos (\dfrac{{10\pi }}{{13}}) + \cos (\dfrac{{ - 8\pi }}{{13}}) \\
\]
Since we know cosine is an even function, which means that \[\cos ( - x) = \cos (x)\]
Here value of \[x = - \dfrac{{8\pi }}{{13}}\]
So, substitute the value of \[\cos ( - \dfrac{{8\pi }}{{13}}) = \cos (\dfrac{{8\pi }}{{13}})\]in the equation.
\[ \Rightarrow 2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} = \cos (\dfrac{{10\pi }}{{13}}) + \cos (\dfrac{{8\pi }}{{13}})\] … (i)
Now we substitute the value from equation (i) on the left hand side of the equation.
\[ \Rightarrow 2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} = \cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}\] … (ii)
Now we use the formula \[\cos A + \cos B = 2\cos (\dfrac{{A + B}}{2})\cos (\dfrac{{A - B}}{2})\]in two separate pairs.
We make pairs such that when we add the numerator it gets cancelled by the denominator and gives us an angle whose cosine is known to us.
We make a pair of \[\left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right)\]and other pair of \[\left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right)\]
First we solve \[\left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right)\], where \[A = \dfrac{{10\pi }}{{13}},B = \dfrac{{3\pi }}{{13}}\]
\[ \Rightarrow \left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{10\pi }}{{13}} + \dfrac{{3\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{10\pi }}{{13}} - \dfrac{{3\pi }}{{13}}}}{2}} \right)\]
Taking LCM in the numerator of the angles inside the bracket.
\[
\Rightarrow \left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{10\pi + 3\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{10\pi - 3\pi }}{{13}}}}{2}} \right) \\
\Rightarrow \left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{13\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{7\pi }}{{13}}}}{2}} \right) \\
\]
Cancelling the same term from numerator and denominator in the angle.
\[ \Rightarrow \left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{{7\pi }}{{26}}} \right)\]
Since we know \[\cos \dfrac{\pi }{2} = 0\]
\[ \Rightarrow \left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right) = 2 \times 0 \times \cos \left( {\dfrac{{7\pi }}{{26}}} \right) = 0\] … (iii)
Now we solve\[\left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right)\], where \[A = \dfrac{{8\pi }}{{13}},B = \dfrac{{5\pi }}{{13}}\]
\[ \Rightarrow \left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{8\pi }}{{13}} + \dfrac{{5\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{8\pi }}{{13}} - \dfrac{{5\pi }}{{13}}}}{2}} \right)\]
Taking LCM in the numerator of the angles inside the bracket.
\[ \Rightarrow \left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{8\pi + 5\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{8\pi - 5\pi }}{{13}}}}{2}} \right)\]
\[ \Rightarrow \left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{13\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{3\pi }}{{13}}}}{2}} \right)\]
Cancelling the same term from numerator and denominator in the angle.
\[ \Rightarrow \left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{{3\pi }}{{26}}} \right)\]
Since we know \[\cos \dfrac{\pi }{2} = 0\]
\[ \Rightarrow \left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right) = 2 \times 0 \times \cos \left( {\dfrac{{3\pi }}{{26}}} \right) = 0\] … (iv)
Now we substitute the values from equation (iii) and (iv) in equation (ii)
\[ \Rightarrow \cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} = 0 + 0 = 0\]
which is equal to the right hand side of the equation.
Hence Proved.
Note: Students many times make mistake of writing the value of \[\cos ( - \dfrac{{8\pi }}{{13}}) = - \cos (\dfrac{{8\pi }}{{13}})\] because they think that negative sign comes out of the angle which is wrong, we always classify if the function is an odd or even function and then find if sign vanishes or comes out. In this case cosine is an even function, so negative sign vanishes.
Complete step-by-step answer:
First we solve \[2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}}\]by using the identity \[2\cos A\cos B = \cos (A + B) + \cos (A - B)\]
Where \[A = \dfrac{\pi }{{13}},B = \dfrac{{9\pi }}{{13}}\]
So, by substituting the values we can write.
\[ \Rightarrow 2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} = \cos (\dfrac{\pi }{{13}} + \dfrac{{9\pi }}{{13}}) + \cos (\dfrac{\pi }{{13}} - \dfrac{{9\pi }}{{13}})\]
Take LCM of the angles within the bracket.
\[
\Rightarrow 2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} = \cos (\dfrac{{\pi + 9\pi }}{{13}}) + \cos (\dfrac{{\pi - 9\pi }}{{13}}) \\
\Rightarrow 2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} = \cos (\dfrac{{10\pi }}{{13}}) + \cos (\dfrac{{ - 8\pi }}{{13}}) \\
\]
Since we know cosine is an even function, which means that \[\cos ( - x) = \cos (x)\]
Here value of \[x = - \dfrac{{8\pi }}{{13}}\]
So, substitute the value of \[\cos ( - \dfrac{{8\pi }}{{13}}) = \cos (\dfrac{{8\pi }}{{13}})\]in the equation.
\[ \Rightarrow 2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} = \cos (\dfrac{{10\pi }}{{13}}) + \cos (\dfrac{{8\pi }}{{13}})\] … (i)
Now we substitute the value from equation (i) on the left hand side of the equation.
\[ \Rightarrow 2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} = \cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}\] … (ii)
Now we use the formula \[\cos A + \cos B = 2\cos (\dfrac{{A + B}}{2})\cos (\dfrac{{A - B}}{2})\]in two separate pairs.
We make pairs such that when we add the numerator it gets cancelled by the denominator and gives us an angle whose cosine is known to us.
We make a pair of \[\left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right)\]and other pair of \[\left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right)\]
First we solve \[\left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right)\], where \[A = \dfrac{{10\pi }}{{13}},B = \dfrac{{3\pi }}{{13}}\]
\[ \Rightarrow \left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{10\pi }}{{13}} + \dfrac{{3\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{10\pi }}{{13}} - \dfrac{{3\pi }}{{13}}}}{2}} \right)\]
Taking LCM in the numerator of the angles inside the bracket.
\[
\Rightarrow \left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{10\pi + 3\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{10\pi - 3\pi }}{{13}}}}{2}} \right) \\
\Rightarrow \left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{13\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{7\pi }}{{13}}}}{2}} \right) \\
\]
Cancelling the same term from numerator and denominator in the angle.
\[ \Rightarrow \left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{{7\pi }}{{26}}} \right)\]
Since we know \[\cos \dfrac{\pi }{2} = 0\]
\[ \Rightarrow \left( {\cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}}} \right) = 2 \times 0 \times \cos \left( {\dfrac{{7\pi }}{{26}}} \right) = 0\] … (iii)
Now we solve\[\left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right)\], where \[A = \dfrac{{8\pi }}{{13}},B = \dfrac{{5\pi }}{{13}}\]
\[ \Rightarrow \left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{8\pi }}{{13}} + \dfrac{{5\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{8\pi }}{{13}} - \dfrac{{5\pi }}{{13}}}}{2}} \right)\]
Taking LCM in the numerator of the angles inside the bracket.
\[ \Rightarrow \left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{8\pi + 5\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{8\pi - 5\pi }}{{13}}}}{2}} \right)\]
\[ \Rightarrow \left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{{\dfrac{{13\pi }}{{13}}}}{2}} \right)\cos \left( {\dfrac{{\dfrac{{3\pi }}{{13}}}}{2}} \right)\]
Cancelling the same term from numerator and denominator in the angle.
\[ \Rightarrow \left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right) = 2\cos \left( {\dfrac{\pi }{2}} \right)\cos \left( {\dfrac{{3\pi }}{{26}}} \right)\]
Since we know \[\cos \dfrac{\pi }{2} = 0\]
\[ \Rightarrow \left( {\cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}} \right) = 2 \times 0 \times \cos \left( {\dfrac{{3\pi }}{{26}}} \right) = 0\] … (iv)
Now we substitute the values from equation (iii) and (iv) in equation (ii)
\[ \Rightarrow \cos \dfrac{{10\pi }}{{13}} + \cos \dfrac{{8\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} = 0 + 0 = 0\]
which is equal to the right hand side of the equation.
Hence Proved.
Note: Students many times make mistake of writing the value of \[\cos ( - \dfrac{{8\pi }}{{13}}) = - \cos (\dfrac{{8\pi }}{{13}})\] because they think that negative sign comes out of the angle which is wrong, we always classify if the function is an odd or even function and then find if sign vanishes or comes out. In this case cosine is an even function, so negative sign vanishes.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE