
How do you prove $\dfrac{{1 - {{\tan }^2}\theta }}{{1 - {{\cot }^2}\theta }} = 1 - {\sec ^2}\theta$?
Answer
447.6k+ views
Hint: This question is from the topic of trigonometric identities. In this we need to prove $\dfrac{{1 - {{\tan }^2}\theta }}{{1 - {{\cot }^2}\theta }} = 1 - {\sec ^2}\theta $. To prove this we will use basic trigonometric identities and trigonometric functions. To prove this we start with L.H.S of the equation and write it in the form of $\sin \theta $ and $\cos \theta $.
Complete step by step solution:
Let us try to solve this question in which we are asked to prove
that $\dfrac{{1 - {{\tan }^2}\theta }}{{1 - {{\cot }^2}\theta }} = 1 - {\sec ^2}\theta $.
To prove this we will first use this relations $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta = \dfrac{{\cos
\theta }}{{\sin \theta }}$. We simplify this equation to get the required result $1 - {\sec ^2}\theta$.
Let’s try to prove.
To Prove: $\dfrac{{1 - {{\tan }^2}\theta }}{{1 - {{\cot }^2}\theta }} = 1 - {\sec ^2}\theta $
Proof: We have,
$\dfrac{{1 - {{\tan }^2}\theta }}{{1 - {{\cot }^2}\theta }} = 1 - {\sec ^2}\theta $
$(1)$
Now by using the identities such as $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta
= \dfrac{{\cos \theta }}{{\sin \theta }}$. Putting the values of these identities in equation$(1)$, we get
$\dfrac{{1 - {{\left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right)}^2}}}{{1 - {{\left(
{\dfrac{{\cos \theta }}{{\sin \theta }}} \right)}^2}}} = 1 - {\sec ^2}\theta $ $(2)$
$\dfrac{{1 - \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}}}{{1 - \dfrac{{{{\cos
}^2}\theta }}{{{{\sin }^2}\theta }}}} = 1 - {\sec ^2}\theta $ $(3)$
Now, by performing fraction subtraction in the L.H.S of equation $(3)$ numerator and denominator both, we get
$\dfrac{{\dfrac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{{{\cos }^2}\theta
}}}}{{\dfrac{{{{\sin }^2}\theta - {{\cos }^2}\theta }}{{{{\sin }^2}\theta }}}} = 1 - {\sec ^2}\theta $
$(4)$
Now using this property $\dfrac{{\dfrac{a}{b}}}{{\dfrac{c}{d}}} = \dfrac{{a \cdot d}}{{b \cdot c}}$in the equation $(4)$, we get
$\dfrac{{{{\sin }^2}\theta ({{\cos }^2}\theta - {{\sin }^2}\theta )}}{{{{\cos
}^2}\theta ({{\sin }^2}\theta - {{\cos }^2}\theta )}} = 1 - {\sec ^2}\theta $ $(5)$
Now by using the result $\dfrac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{{{\sin }^2}\theta - {{\cos }^2}\theta }} = - 1$ in the equation $(5)$, we get
$ - \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} = 1 - {\sec ^2}\theta $
$(6)$
As we already know that $\dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} = {\tan ^2}\theta $ in the equation $(6)$, we get
$ - {\tan ^2}\theta = 1 - {\sec ^2}\theta $ $(7)$
Now by using the trigonometric identity ${\sec ^2}\theta - {\tan ^2}\theta = 1$ in the equation $(7)$, we get
We write the above trigonometric identity as $ - {\tan ^2}\theta = 1 - {\sec ^2}\theta $. So we can write equation $(7)$ as,
$1 - {\sec ^2}\theta = 1 - {\sec ^2}\theta $
Since we have shown L.H.S of the equation $\dfrac{{1 - {{\tan }^2}\theta }}{{1 - {{\cot }^2}\theta }} = 1 - {\sec ^2}\theta $ equal to the R.H.S.
Hence proved.
Note: While solving these types of questions in which we have to prove trigonometric equations, we will start with the L.H.S of equation to derive R.H.S from it. To prove this question we only requires knowledge of basic trigonometric identities such as ${\sin ^2}x + {\cos ^2}x = 1$, ${\sec ^2}x - {\tan ^2}x = 1$
Complete step by step solution:
Let us try to solve this question in which we are asked to prove
that $\dfrac{{1 - {{\tan }^2}\theta }}{{1 - {{\cot }^2}\theta }} = 1 - {\sec ^2}\theta $.
To prove this we will first use this relations $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta = \dfrac{{\cos
\theta }}{{\sin \theta }}$. We simplify this equation to get the required result $1 - {\sec ^2}\theta$.
Let’s try to prove.
To Prove: $\dfrac{{1 - {{\tan }^2}\theta }}{{1 - {{\cot }^2}\theta }} = 1 - {\sec ^2}\theta $
Proof: We have,
$\dfrac{{1 - {{\tan }^2}\theta }}{{1 - {{\cot }^2}\theta }} = 1 - {\sec ^2}\theta $
$(1)$
Now by using the identities such as $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta
= \dfrac{{\cos \theta }}{{\sin \theta }}$. Putting the values of these identities in equation$(1)$, we get
$\dfrac{{1 - {{\left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right)}^2}}}{{1 - {{\left(
{\dfrac{{\cos \theta }}{{\sin \theta }}} \right)}^2}}} = 1 - {\sec ^2}\theta $ $(2)$
$\dfrac{{1 - \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}}}{{1 - \dfrac{{{{\cos
}^2}\theta }}{{{{\sin }^2}\theta }}}} = 1 - {\sec ^2}\theta $ $(3)$
Now, by performing fraction subtraction in the L.H.S of equation $(3)$ numerator and denominator both, we get
$\dfrac{{\dfrac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{{{\cos }^2}\theta
}}}}{{\dfrac{{{{\sin }^2}\theta - {{\cos }^2}\theta }}{{{{\sin }^2}\theta }}}} = 1 - {\sec ^2}\theta $
$(4)$
Now using this property $\dfrac{{\dfrac{a}{b}}}{{\dfrac{c}{d}}} = \dfrac{{a \cdot d}}{{b \cdot c}}$in the equation $(4)$, we get
$\dfrac{{{{\sin }^2}\theta ({{\cos }^2}\theta - {{\sin }^2}\theta )}}{{{{\cos
}^2}\theta ({{\sin }^2}\theta - {{\cos }^2}\theta )}} = 1 - {\sec ^2}\theta $ $(5)$
Now by using the result $\dfrac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{{{\sin }^2}\theta - {{\cos }^2}\theta }} = - 1$ in the equation $(5)$, we get
$ - \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} = 1 - {\sec ^2}\theta $
$(6)$
As we already know that $\dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} = {\tan ^2}\theta $ in the equation $(6)$, we get
$ - {\tan ^2}\theta = 1 - {\sec ^2}\theta $ $(7)$
Now by using the trigonometric identity ${\sec ^2}\theta - {\tan ^2}\theta = 1$ in the equation $(7)$, we get
We write the above trigonometric identity as $ - {\tan ^2}\theta = 1 - {\sec ^2}\theta $. So we can write equation $(7)$ as,
$1 - {\sec ^2}\theta = 1 - {\sec ^2}\theta $
Since we have shown L.H.S of the equation $\dfrac{{1 - {{\tan }^2}\theta }}{{1 - {{\cot }^2}\theta }} = 1 - {\sec ^2}\theta $ equal to the R.H.S.
Hence proved.
Note: While solving these types of questions in which we have to prove trigonometric equations, we will start with the L.H.S of equation to derive R.H.S from it. To prove this question we only requires knowledge of basic trigonometric identities such as ${\sin ^2}x + {\cos ^2}x = 1$, ${\sec ^2}x - {\tan ^2}x = 1$
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

State the laws of reflection of light

Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
