How do you prove $\dfrac{1+\cos x}{\sin x}+\dfrac{\sin x}{1+\cos x}=\csc x$ ?
Answer
Verified
450k+ views
Hint: We begin from left hand side of the given statement by adding the two fractional trigonometric expressions by the working rule to add fractions$\dfrac{a}{b}+\dfrac{c}{d}=\dfrac{ad+bc}{bd}$ and then use Pythagorean trigonometric identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ to simplify. We finally use the reciprocal relation between sine and cosine $\csc \theta =\dfrac{1}{\sin \theta }$ to arrive at the right hand side.
Complete step-by-step solution:
We are given the following statement to prove.
\[\dfrac{1+\cos x}{\sin x}+\dfrac{\sin x}{1+\cos x}=\csc x\]
We begin from left hand side using the working rule for adding fraction $\dfrac{a}{b}+\dfrac{c}{d}=\dfrac{ad+bc}{bd}$ for $a=1+\cos x=d,b=\sin x=c$ have;
\[\begin{align}
& \dfrac{1+\cos x}{\sin x}+\dfrac{\sin x}{1+\cos x} \\
& \Rightarrow \dfrac{\left( 1+\cos x \right)\left( 1+\cos x \right)+\sin x\cdot \sin x}{\sin x\left( 1+\cos x \right)} \\
& \Rightarrow \dfrac{{{\left( 1+\cos x \right)}^{2}}+\sin x\cdot \sin x}{\sin x\left( 1+\cos x \right)} \\
\end{align}\]
We use the algebraic identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ in the numerator of the above step for $a=1,b=\cos x$to have;
\[\begin{align}
& \Rightarrow \dfrac{1+{{\cos }^{2}}x+2\cdot 1\cdot \cos x+{{\sin }^{2}}x}{\sin x\left( 1+\cos x \right)} \\
& \Rightarrow \dfrac{1+{{\sin }^{2}}x+{{\cos }^{2}}x+2\cos x}{\sin x\left( 1+\cos x \right)} \\
\end{align}\]
We know from Pythagorean trigonometric identity that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ for all values of $\theta $. We use this identity in numerator the above step for $\theta =x$to have
\[\begin{align}
& \Rightarrow \dfrac{1+1+2\cos x}{\sin x\left( 1+\cos x \right)} \\
& \Rightarrow \dfrac{2+2\cos x}{\sin x\left( 1+\cos x \right)} \\
& \Rightarrow \dfrac{2\left( 1+\cos x \right)}{\sin x\left( 1+\cos x \right)} \\
\end{align}\]
We cancel out the term $1+\cos x$ in the numerator and denominator of the above step to have;
\[\Rightarrow \dfrac{2}{\sin x}\]
We use the reciprocal relation of sine and cosecant $\csc \theta =\dfrac{1}{\sin \theta }$ for $\theta =x$ in the above step to have
\[\Rightarrow \dfrac{2}{\sin x}=2\csc x\]
The above expression is on the right hand side of the statement of proof. Hence the given statement is proved.
Alternative Method: We shall alternatively solve using cosine and sine double angle formulas. We know that the double angle formula of cosine $1+\cos \theta =2{{\cos }^{2}}\left( \dfrac{\theta }{2} \right)$. We know from the sine double angle formula that $\sin 2\theta =2\sin \theta \cos \theta $. We use this formula in the left hand side of the given expression and then proceed to have;
\[\begin{align}
& \dfrac{2{{\cos }^{2}}\left( \dfrac{x}{2} \right)}{2\sin \left( \dfrac{x}{2} \right)\cos \left( \dfrac{x}{2} \right)}+\dfrac{2\sin \left( \dfrac{x}{2} \right)\cos \left( \dfrac{x}{2} \right)}{2{{\cos }^{2}}\left( \dfrac{x}{2} \right)} \\
& \Rightarrow \dfrac{\cos \left( \dfrac{x}{2} \right)\cos \left( \dfrac{x}{2} \right)}{\sin \left( \dfrac{x}{2} \right)\cos \left( \dfrac{x}{2} \right)}+\dfrac{\sin \left( \dfrac{x}{2} \right)\cos \left( \dfrac{x}{2} \right)}{\cos \left( \dfrac{x}{2} \right)\cos \left( \dfrac{x}{2} \right)} \\
\end{align}\]
We cancel out the term $\cos \left( \dfrac{x}{2} \right)$ in the above step to have;
\[\begin{align}
& \Rightarrow \dfrac{\cos \left( \dfrac{x}{2} \right)}{\sin \left( \dfrac{x}{2} \right)}+\dfrac{\sin \left( \dfrac{x}{2} \right)}{\cos \left( \dfrac{x}{2} \right)} \\
& \Rightarrow \dfrac{{{\cos }^{2}}\left( \dfrac{x}{2} \right)+{{\sin }^{2}}\left( \dfrac{x}{2} \right)}{\sin \left( \dfrac{x}{2} \right)\cos \left( \dfrac{x}{2} \right)} \\
\end{align}\]
We use the Pythagorean trigonometric identity that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ for $\theta =\dfrac{x}{2}$ in the above step to have;
\[\begin{align}
& \Rightarrow \dfrac{1}{\sin \left( \dfrac{x}{2} \right)\cos \left( \dfrac{x}{2} \right)} \\
& \Rightarrow \dfrac{2}{2\sin \left( \dfrac{x}{2} \right)\cos \left( \dfrac{x}{2} \right)} \\
\end{align}\]
We use the sine double angle formula $\sin 2\theta =2\sin \theta \cos \theta $ for $\theta =\dfrac{x}{2}$ in the denominator of above step to have;
\[\begin{align}
& \Rightarrow \dfrac{2}{\sin \left( 2\times \dfrac{x}{2} \right)} \\
& \Rightarrow \dfrac{2}{\sin x} \\
& \Rightarrow 2\times \dfrac{1}{\sin x} \\
\end{align}\]
We use the reciprocal relation of sine and cosecant $\csc \theta =\dfrac{1}{\sin \theta }$ for $\theta =x$ in the above step to have
\[\Rightarrow 2\times \csc x=2\csc x\]
The above expression is on the right hand side of the statement of proof. Hence the given statement is proved.
Note: We note that an equation is called identity when the expression is true for all values of parameters $x$. We see that in the given expression assumes conditions $\sin x\ne 0\Rightarrow x=n\pi $ and $1+\cos x\ne 0\Rightarrow c\ne \left( 2n+1 \right)\pi $ where $n$ is any integer. So the given equation is not an identity. We need to be clear of the confusion between formulas $1+\cos \theta ={{\cos }^{2}}\left( \dfrac{\theta }{2} \right)$ and $1-\cos \theta ={{\sin }^{2}}\left( \dfrac{\theta }{2} \right)$ by remembering that in most formulas negative sign is associated with sine and positive sign associated with cosine.
Complete step-by-step solution:
We are given the following statement to prove.
\[\dfrac{1+\cos x}{\sin x}+\dfrac{\sin x}{1+\cos x}=\csc x\]
We begin from left hand side using the working rule for adding fraction $\dfrac{a}{b}+\dfrac{c}{d}=\dfrac{ad+bc}{bd}$ for $a=1+\cos x=d,b=\sin x=c$ have;
\[\begin{align}
& \dfrac{1+\cos x}{\sin x}+\dfrac{\sin x}{1+\cos x} \\
& \Rightarrow \dfrac{\left( 1+\cos x \right)\left( 1+\cos x \right)+\sin x\cdot \sin x}{\sin x\left( 1+\cos x \right)} \\
& \Rightarrow \dfrac{{{\left( 1+\cos x \right)}^{2}}+\sin x\cdot \sin x}{\sin x\left( 1+\cos x \right)} \\
\end{align}\]
We use the algebraic identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ in the numerator of the above step for $a=1,b=\cos x$to have;
\[\begin{align}
& \Rightarrow \dfrac{1+{{\cos }^{2}}x+2\cdot 1\cdot \cos x+{{\sin }^{2}}x}{\sin x\left( 1+\cos x \right)} \\
& \Rightarrow \dfrac{1+{{\sin }^{2}}x+{{\cos }^{2}}x+2\cos x}{\sin x\left( 1+\cos x \right)} \\
\end{align}\]
We know from Pythagorean trigonometric identity that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ for all values of $\theta $. We use this identity in numerator the above step for $\theta =x$to have
\[\begin{align}
& \Rightarrow \dfrac{1+1+2\cos x}{\sin x\left( 1+\cos x \right)} \\
& \Rightarrow \dfrac{2+2\cos x}{\sin x\left( 1+\cos x \right)} \\
& \Rightarrow \dfrac{2\left( 1+\cos x \right)}{\sin x\left( 1+\cos x \right)} \\
\end{align}\]
We cancel out the term $1+\cos x$ in the numerator and denominator of the above step to have;
\[\Rightarrow \dfrac{2}{\sin x}\]
We use the reciprocal relation of sine and cosecant $\csc \theta =\dfrac{1}{\sin \theta }$ for $\theta =x$ in the above step to have
\[\Rightarrow \dfrac{2}{\sin x}=2\csc x\]
The above expression is on the right hand side of the statement of proof. Hence the given statement is proved.
Alternative Method: We shall alternatively solve using cosine and sine double angle formulas. We know that the double angle formula of cosine $1+\cos \theta =2{{\cos }^{2}}\left( \dfrac{\theta }{2} \right)$. We know from the sine double angle formula that $\sin 2\theta =2\sin \theta \cos \theta $. We use this formula in the left hand side of the given expression and then proceed to have;
\[\begin{align}
& \dfrac{2{{\cos }^{2}}\left( \dfrac{x}{2} \right)}{2\sin \left( \dfrac{x}{2} \right)\cos \left( \dfrac{x}{2} \right)}+\dfrac{2\sin \left( \dfrac{x}{2} \right)\cos \left( \dfrac{x}{2} \right)}{2{{\cos }^{2}}\left( \dfrac{x}{2} \right)} \\
& \Rightarrow \dfrac{\cos \left( \dfrac{x}{2} \right)\cos \left( \dfrac{x}{2} \right)}{\sin \left( \dfrac{x}{2} \right)\cos \left( \dfrac{x}{2} \right)}+\dfrac{\sin \left( \dfrac{x}{2} \right)\cos \left( \dfrac{x}{2} \right)}{\cos \left( \dfrac{x}{2} \right)\cos \left( \dfrac{x}{2} \right)} \\
\end{align}\]
We cancel out the term $\cos \left( \dfrac{x}{2} \right)$ in the above step to have;
\[\begin{align}
& \Rightarrow \dfrac{\cos \left( \dfrac{x}{2} \right)}{\sin \left( \dfrac{x}{2} \right)}+\dfrac{\sin \left( \dfrac{x}{2} \right)}{\cos \left( \dfrac{x}{2} \right)} \\
& \Rightarrow \dfrac{{{\cos }^{2}}\left( \dfrac{x}{2} \right)+{{\sin }^{2}}\left( \dfrac{x}{2} \right)}{\sin \left( \dfrac{x}{2} \right)\cos \left( \dfrac{x}{2} \right)} \\
\end{align}\]
We use the Pythagorean trigonometric identity that ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$ for $\theta =\dfrac{x}{2}$ in the above step to have;
\[\begin{align}
& \Rightarrow \dfrac{1}{\sin \left( \dfrac{x}{2} \right)\cos \left( \dfrac{x}{2} \right)} \\
& \Rightarrow \dfrac{2}{2\sin \left( \dfrac{x}{2} \right)\cos \left( \dfrac{x}{2} \right)} \\
\end{align}\]
We use the sine double angle formula $\sin 2\theta =2\sin \theta \cos \theta $ for $\theta =\dfrac{x}{2}$ in the denominator of above step to have;
\[\begin{align}
& \Rightarrow \dfrac{2}{\sin \left( 2\times \dfrac{x}{2} \right)} \\
& \Rightarrow \dfrac{2}{\sin x} \\
& \Rightarrow 2\times \dfrac{1}{\sin x} \\
\end{align}\]
We use the reciprocal relation of sine and cosecant $\csc \theta =\dfrac{1}{\sin \theta }$ for $\theta =x$ in the above step to have
\[\Rightarrow 2\times \csc x=2\csc x\]
The above expression is on the right hand side of the statement of proof. Hence the given statement is proved.
Note: We note that an equation is called identity when the expression is true for all values of parameters $x$. We see that in the given expression assumes conditions $\sin x\ne 0\Rightarrow x=n\pi $ and $1+\cos x\ne 0\Rightarrow c\ne \left( 2n+1 \right)\pi $ where $n$ is any integer. So the given equation is not an identity. We need to be clear of the confusion between formulas $1+\cos \theta ={{\cos }^{2}}\left( \dfrac{\theta }{2} \right)$ and $1-\cos \theta ={{\sin }^{2}}\left( \dfrac{\theta }{2} \right)$ by remembering that in most formulas negative sign is associated with sine and positive sign associated with cosine.
Recently Updated Pages
Difference Between Prokaryotic Cells and Eukaryotic Cells
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
What is spore formation class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
What are the limitations of Rutherfords model of an class 11 chemistry CBSE