
Prove by the principle of mathematical induction that for all $n \in N$: $1 + 4 + 7 + .... + (3n - 2) = \dfrac{1}{2}n(3n - 1)$
Answer
576.3k+ views
Hint: Here in this question the concept of mathematical induction will get used which states that if the statement is true for n=k then it will also be true for its successor i.e. n=k+1. This is known as principle of mathematical induction
Complete step-by-step answer:
Let the given statement be named as P(n) so it can be written as$P(n) = 1 + 4 + 7 + .... + (3n - 2) = \dfrac{1}{2}n(3n - 1)$, $n \in N$
For n=1
$ \Rightarrow P(1) = \dfrac{1}{2}(1)(3 - 1) = 1$ which is true
Now we will assume that P(m) is true for some positive integers ‘m’$ \Rightarrow P(m) = 1 + 4 + 7 + .... + (3m - 2) = \dfrac{1}{2}m(3m - 1)$
Now according to principle of mathematical induction if a statement is true for n=m then it will also be true for its successor i.e. n=m+1, therefore we shall prove that P(m+1) is also true.$ \Rightarrow P(m + 1) = 1 + 4 + 7 + .... + (3(m + 1) - 2) = \dfrac{1}{2}(m + 1)((3m + 3) - 1)$$ \Rightarrow 1 + 4 + 7 + .... + (3m + 3 - 2) = \dfrac{1}{2}(m + 1)(3m + 2)$ $ \Rightarrow 1 + 4 + 7 + .... + (3m + 1) = \dfrac{1}{2}(m + 1)(3m + 2)$
L.H.S=$1 + 4 + 7 + .... + (3m + 1)$
R.H.S=$\dfrac{1}{2}(m + 1)(3m + 2)$
Now we will prove L.H.S=R.H.S
$ \Rightarrow 1 + 4 + 7 + .... + (3m - 2) + (3m + 1)$ (Adding term before 3m+1)
Here we will apply formula of sum of arithmetic progression i.e. ${S_n} = \dfrac{n}{2}(2a + (n - 1)d)$ $ \Rightarrow {S_n} = \dfrac{m}{2}(2(1) + (m - 1)(4 - 1))$ (Here a=1, d=4-1 and m is the total number of terms)
Now putting and solving the equation we will get a sum of arithmetic progression. $ \Rightarrow {S_n} = \dfrac{m}{2}(2 + (m - 1)3)$
$ \Rightarrow {S_n} = \dfrac{m}{2}(2 + 3m - 3) = \dfrac{m}{2}(3m - 1)$
$ \Rightarrow \dfrac{{m(3m - 1)}}{2} + (3m + 1)$
Now taking L.C.M we will get
$ \Rightarrow \dfrac{{m(3m - 1) + 2(3m + 1)}}{2}$
$ \Rightarrow \dfrac{{3{m^2} - m + 6m + 2}}{2}$
$ \Rightarrow \dfrac{{3{m^2} + 5m + 2}}{2} = \dfrac{{3{m^2} + 3m + 2m + 2}}{2}$
(Splitting the equation to find the factors of quadratic equation)
$ \Rightarrow \dfrac{{3m(m + 1) + 2(m + 1)}}{2}$
$ \Rightarrow \dfrac{{(3m + 2)(m + 1)}}{2}$=R.H.S
Therefore P(m+1) holds true.
Thus, by principle of mathematical induction, for all $n \in N$, P(n) holds true.
Note: Some students may find difficulty in splitting the quadratic equation whose coefficient of degree two variable is not one so below is the explanation of it: -
Let’s take above equation as an example: -$3{m^2} + 5m + 2$
Now comparing with general quadratic equation $a{x^2} + bx + c$
Here a=3, b=5, c=2
Step1. Multiply ab i.e. $ab = 3 \times 2 = 6$
Step2. Now split 6 into that factors so that its sum is equal to ‘b’
$ \Rightarrow 3 \times 2 = 6$ Factors are 3 and 2 whose sum is 5.
Therefore 5m will get split into 3m and 2m and the equation will become $3{m^2} + 3m + 2m + 2$
Complete step-by-step answer:
Let the given statement be named as P(n) so it can be written as$P(n) = 1 + 4 + 7 + .... + (3n - 2) = \dfrac{1}{2}n(3n - 1)$, $n \in N$
For n=1
$ \Rightarrow P(1) = \dfrac{1}{2}(1)(3 - 1) = 1$ which is true
Now we will assume that P(m) is true for some positive integers ‘m’$ \Rightarrow P(m) = 1 + 4 + 7 + .... + (3m - 2) = \dfrac{1}{2}m(3m - 1)$
Now according to principle of mathematical induction if a statement is true for n=m then it will also be true for its successor i.e. n=m+1, therefore we shall prove that P(m+1) is also true.$ \Rightarrow P(m + 1) = 1 + 4 + 7 + .... + (3(m + 1) - 2) = \dfrac{1}{2}(m + 1)((3m + 3) - 1)$$ \Rightarrow 1 + 4 + 7 + .... + (3m + 3 - 2) = \dfrac{1}{2}(m + 1)(3m + 2)$ $ \Rightarrow 1 + 4 + 7 + .... + (3m + 1) = \dfrac{1}{2}(m + 1)(3m + 2)$
L.H.S=$1 + 4 + 7 + .... + (3m + 1)$
R.H.S=$\dfrac{1}{2}(m + 1)(3m + 2)$
Now we will prove L.H.S=R.H.S
$ \Rightarrow 1 + 4 + 7 + .... + (3m - 2) + (3m + 1)$ (Adding term before 3m+1)
Here we will apply formula of sum of arithmetic progression i.e. ${S_n} = \dfrac{n}{2}(2a + (n - 1)d)$ $ \Rightarrow {S_n} = \dfrac{m}{2}(2(1) + (m - 1)(4 - 1))$ (Here a=1, d=4-1 and m is the total number of terms)
Now putting and solving the equation we will get a sum of arithmetic progression. $ \Rightarrow {S_n} = \dfrac{m}{2}(2 + (m - 1)3)$
$ \Rightarrow {S_n} = \dfrac{m}{2}(2 + 3m - 3) = \dfrac{m}{2}(3m - 1)$
$ \Rightarrow \dfrac{{m(3m - 1)}}{2} + (3m + 1)$
Now taking L.C.M we will get
$ \Rightarrow \dfrac{{m(3m - 1) + 2(3m + 1)}}{2}$
$ \Rightarrow \dfrac{{3{m^2} - m + 6m + 2}}{2}$
$ \Rightarrow \dfrac{{3{m^2} + 5m + 2}}{2} = \dfrac{{3{m^2} + 3m + 2m + 2}}{2}$
(Splitting the equation to find the factors of quadratic equation)
$ \Rightarrow \dfrac{{3m(m + 1) + 2(m + 1)}}{2}$
$ \Rightarrow \dfrac{{(3m + 2)(m + 1)}}{2}$=R.H.S
Therefore P(m+1) holds true.
Thus, by principle of mathematical induction, for all $n \in N$, P(n) holds true.
Note: Some students may find difficulty in splitting the quadratic equation whose coefficient of degree two variable is not one so below is the explanation of it: -
Let’s take above equation as an example: -$3{m^2} + 5m + 2$
Now comparing with general quadratic equation $a{x^2} + bx + c$
Here a=3, b=5, c=2
Step1. Multiply ab i.e. $ab = 3 \times 2 = 6$
Step2. Now split 6 into that factors so that its sum is equal to ‘b’
$ \Rightarrow 3 \times 2 = 6$ Factors are 3 and 2 whose sum is 5.
Therefore 5m will get split into 3m and 2m and the equation will become $3{m^2} + 3m + 2m + 2$
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

The camels hump is made of which tissues a Skeletal class 11 biology CBSE

