Answer
Verified
415.5k+ views
Hint: We have sum of two terms in the left-hand side of $1-\dfrac{{{\cos }^{2}}x}{1+\sin x}=\sin x$. We use the identities ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ for the numerator. Then we use the identity of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ to factor the numerator. We complete the division and the binary operations to get the final answer.
Complete step by step solution:
We now use the identity theorem of trigonometry ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ which gives us ${{\cos }^{2}}x=1-{{\sin }^{2}}x$.
We place the value in the numerator of the equation $\dfrac{{{\cos }^{2}}x}{1+\sin x}$ and get $\dfrac{{{\cos }^{2}}x}{1+\sin x}=\dfrac{1-{{\sin }^{2}}x}{1+\sin x}$.
The left side of the equation $1-\dfrac{{{\cos }^{2}}x}{1+\sin x}$ gives $1-\dfrac{{{\cos }^{2}}x}{1+\sin x}=1-\dfrac{1-{{\sin }^{2}}x}{1+\sin x}$.
The numerator is in the form of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. We now apply the identity theorem for the term $1-{{\sin }^{2}}x$. We assume the values $a=1,b=\sin x$.
Applying the theorem, we get $1-{{\sin }^{2}}x=\left( 1+\sin x \right)\left( 1-\sin x \right)$.
The equation becomes $\dfrac{1-{{\sin }^{2}}x}{1+\sin x}=\dfrac{\left( 1+\sin x \right)\left( 1-\sin x \right)}{\left( 1+\sin x \right)}$.
We can now eliminate the $\left( 1+\sin x \right)$ from both denominator and numerator.
The equation becomes $\dfrac{1-{{\sin }^{2}}x}{1+\sin x}=\left( 1-\sin x \right)$.
The final solution is $1-\dfrac{{{\cos }^{2}}x}{1+\sin x}=1-\left( 1-\sin x \right)=1-1+\sin x=\sin x$.
Thus verified $1-\dfrac{{{\cos }^{2}}x}{1+\sin x}=\sin x$.
Note: It is important to remember that the condition to eliminate the $\left( 1+\sin x \right)$ from both denominator and numerator is $\left( 1+\sin x \right)\ne 0$. The simplified form is $\sin x\ne -1$. No domain is given for the variable $x$. The value of $\sin x\ne -1$ is essential. The simplified condition will be $x\ne n\pi -{{\left( -1 \right)}^{n}}\dfrac{\pi }{2},n\in \mathbb{Z}$.
Complete step by step solution:
We now use the identity theorem of trigonometry ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ which gives us ${{\cos }^{2}}x=1-{{\sin }^{2}}x$.
We place the value in the numerator of the equation $\dfrac{{{\cos }^{2}}x}{1+\sin x}$ and get $\dfrac{{{\cos }^{2}}x}{1+\sin x}=\dfrac{1-{{\sin }^{2}}x}{1+\sin x}$.
The left side of the equation $1-\dfrac{{{\cos }^{2}}x}{1+\sin x}$ gives $1-\dfrac{{{\cos }^{2}}x}{1+\sin x}=1-\dfrac{1-{{\sin }^{2}}x}{1+\sin x}$.
The numerator is in the form of ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. We now apply the identity theorem for the term $1-{{\sin }^{2}}x$. We assume the values $a=1,b=\sin x$.
Applying the theorem, we get $1-{{\sin }^{2}}x=\left( 1+\sin x \right)\left( 1-\sin x \right)$.
The equation becomes $\dfrac{1-{{\sin }^{2}}x}{1+\sin x}=\dfrac{\left( 1+\sin x \right)\left( 1-\sin x \right)}{\left( 1+\sin x \right)}$.
We can now eliminate the $\left( 1+\sin x \right)$ from both denominator and numerator.
The equation becomes $\dfrac{1-{{\sin }^{2}}x}{1+\sin x}=\left( 1-\sin x \right)$.
The final solution is $1-\dfrac{{{\cos }^{2}}x}{1+\sin x}=1-\left( 1-\sin x \right)=1-1+\sin x=\sin x$.
Thus verified $1-\dfrac{{{\cos }^{2}}x}{1+\sin x}=\sin x$.
Note: It is important to remember that the condition to eliminate the $\left( 1+\sin x \right)$ from both denominator and numerator is $\left( 1+\sin x \right)\ne 0$. The simplified form is $\sin x\ne -1$. No domain is given for the variable $x$. The value of $\sin x\ne -1$ is essential. The simplified condition will be $x\ne n\pi -{{\left( -1 \right)}^{n}}\dfrac{\pi }{2},n\in \mathbb{Z}$.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell