Answer
Verified
436.5k+ views
Hint: To find the probability of the occurrence of a number that is odd or less than 5 when a fair die is rolled, first write down the sample space. From this, select the odd numbers and let us denote this set to be A. Similarly, we will consider B to be the set of numbers less than 5. Now, find the probabilities of each of these. Occurrence of a number that is odd or less than 5 is denoted as $A\cup B$ . We can find the probability of this by using the formula $P(A\cup B)=P\left( A \right)+P\left( B \right)-P\left( A\cap B \right)$ . $A\cap B$ represents the set that has elements common in A and B. Finding $P\left( A\cap B \right)$ and substituting the values in the formula, the required value can be calculated.
Complete step by step answer:
We need to find the probability of the occurrence of a number that is odd or less than 5 when a fair die is rolled.
We know that when a die is thrown, the sample space will be given by
$S=\left\{ 1,2,3,4,5,6 \right\}$
Of these, the odd numbers are $\left\{ 1,3,5 \right\}$
Let us consider A to be the set of odd numbers occurring when the die is thrown. This is given as
$A=\left\{ 1,3,5 \right\}...(i)$
Let us consider B to be the numbers less than 5 and will be
$B=\left\{ 1,2,3,4 \right\}...(ii)$
Let us now calculate the probability of odd numbers.
$P(A)=\dfrac{\text{Number of favourable outcomes}}{\text{Total number of outcomes}}$
From S, we know that the total number of outcomes =6.
From A, number of favourable outcomes =3
Thus,
$P(A)=\dfrac{3}{6}=\dfrac{1}{2}...(iii)$
Now, let us now calculate the probability of odd numbers less than 5.
From B, number of favourable outcomes =2
$P(B)=\dfrac{4}{\text{6}}=\dfrac{2}{3}...(iv)$
We need to find the probability of occurrence of a number that is odd or less than 5. This is denoted as \[P\left( A\cup B \right)\] .
We know that $P(A\cup B)=P\left( A \right)+P\left( B \right)-P\left( A\cap B \right)...(a)$
$P\left( A\cap B \right)$ is the probability of occurrences common to both A and B.
We can see from (i) and (ii) that
$A\cap B=\left\{ 1,3 \right\}$
Now, we can find $P\left( A\cap B \right)$ .
$P\left( A\cap B \right)=\dfrac{2}{6}=\dfrac{1}{3}...(v)$
Let us substitute (iii), (iv) and (v) in (a). We get
$\begin{align}
& P(A\cup B)=\dfrac{1}{2}+\dfrac{2}{3}-\dfrac{1}{3} \\
& \Rightarrow P(A\cup B)=\dfrac{5}{6} \\
\end{align}$
So, the correct answer is “Option A”.
Note: The representations must be carefully chosen. When we say A or B, we will be using $A\cup B$ . When we say A and B, we will be using $A\cap B$ . Also, you may make mistakes by writing the equation for $P(A\cup B)$ as $P(A\cup B)=P\left( A \right)+P\left( B \right)+P\left( A\cap B \right)$ .
Complete step by step answer:
We need to find the probability of the occurrence of a number that is odd or less than 5 when a fair die is rolled.
We know that when a die is thrown, the sample space will be given by
$S=\left\{ 1,2,3,4,5,6 \right\}$
Of these, the odd numbers are $\left\{ 1,3,5 \right\}$
Let us consider A to be the set of odd numbers occurring when the die is thrown. This is given as
$A=\left\{ 1,3,5 \right\}...(i)$
Let us consider B to be the numbers less than 5 and will be
$B=\left\{ 1,2,3,4 \right\}...(ii)$
Let us now calculate the probability of odd numbers.
$P(A)=\dfrac{\text{Number of favourable outcomes}}{\text{Total number of outcomes}}$
From S, we know that the total number of outcomes =6.
From A, number of favourable outcomes =3
Thus,
$P(A)=\dfrac{3}{6}=\dfrac{1}{2}...(iii)$
Now, let us now calculate the probability of odd numbers less than 5.
From B, number of favourable outcomes =2
$P(B)=\dfrac{4}{\text{6}}=\dfrac{2}{3}...(iv)$
We need to find the probability of occurrence of a number that is odd or less than 5. This is denoted as \[P\left( A\cup B \right)\] .
We know that $P(A\cup B)=P\left( A \right)+P\left( B \right)-P\left( A\cap B \right)...(a)$
$P\left( A\cap B \right)$ is the probability of occurrences common to both A and B.
We can see from (i) and (ii) that
$A\cap B=\left\{ 1,3 \right\}$
Now, we can find $P\left( A\cap B \right)$ .
$P\left( A\cap B \right)=\dfrac{2}{6}=\dfrac{1}{3}...(v)$
Let us substitute (iii), (iv) and (v) in (a). We get
$\begin{align}
& P(A\cup B)=\dfrac{1}{2}+\dfrac{2}{3}-\dfrac{1}{3} \\
& \Rightarrow P(A\cup B)=\dfrac{5}{6} \\
\end{align}$
So, the correct answer is “Option A”.
Note: The representations must be carefully chosen. When we say A or B, we will be using $A\cup B$ . When we say A and B, we will be using $A\cap B$ . Also, you may make mistakes by writing the equation for $P(A\cup B)$ as $P(A\cup B)=P\left( A \right)+P\left( B \right)+P\left( A\cap B \right)$ .
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Change the following sentences into negative and interrogative class 10 english CBSE
Casparian strips are present in of the root A Epiblema class 12 biology CBSE