What is the probability of the occurrence of a number that is odd or less than 5 when a fair die is rolled?
A. $\dfrac{5}{6}$
B. $\dfrac{1}{3}$
C. $\dfrac{2}{3}$
D. $\dfrac{5}{3}$
Answer
Verified
469.8k+ views
Hint: To find the probability of the occurrence of a number that is odd or less than 5 when a fair die is rolled, first write down the sample space. From this, select the odd numbers and let us denote this set to be A. Similarly, we will consider B to be the set of numbers less than 5. Now, find the probabilities of each of these. Occurrence of a number that is odd or less than 5 is denoted as $A\cup B$ . We can find the probability of this by using the formula $P(A\cup B)=P\left( A \right)+P\left( B \right)-P\left( A\cap B \right)$ . $A\cap B$ represents the set that has elements common in A and B. Finding $P\left( A\cap B \right)$ and substituting the values in the formula, the required value can be calculated.
Complete step by step answer:
We need to find the probability of the occurrence of a number that is odd or less than 5 when a fair die is rolled.
We know that when a die is thrown, the sample space will be given by
$S=\left\{ 1,2,3,4,5,6 \right\}$
Of these, the odd numbers are $\left\{ 1,3,5 \right\}$
Let us consider A to be the set of odd numbers occurring when the die is thrown. This is given as
$A=\left\{ 1,3,5 \right\}...(i)$
Let us consider B to be the numbers less than 5 and will be
$B=\left\{ 1,2,3,4 \right\}...(ii)$
Let us now calculate the probability of odd numbers.
$P(A)=\dfrac{\text{Number of favourable outcomes}}{\text{Total number of outcomes}}$
From S, we know that the total number of outcomes =6.
From A, number of favourable outcomes =3
Thus,
$P(A)=\dfrac{3}{6}=\dfrac{1}{2}...(iii)$
Now, let us now calculate the probability of odd numbers less than 5.
From B, number of favourable outcomes =2
$P(B)=\dfrac{4}{\text{6}}=\dfrac{2}{3}...(iv)$
We need to find the probability of occurrence of a number that is odd or less than 5. This is denoted as \[P\left( A\cup B \right)\] .
We know that $P(A\cup B)=P\left( A \right)+P\left( B \right)-P\left( A\cap B \right)...(a)$
$P\left( A\cap B \right)$ is the probability of occurrences common to both A and B.
We can see from (i) and (ii) that
$A\cap B=\left\{ 1,3 \right\}$
Now, we can find $P\left( A\cap B \right)$ .
$P\left( A\cap B \right)=\dfrac{2}{6}=\dfrac{1}{3}...(v)$
Let us substitute (iii), (iv) and (v) in (a). We get
$\begin{align}
& P(A\cup B)=\dfrac{1}{2}+\dfrac{2}{3}-\dfrac{1}{3} \\
& \Rightarrow P(A\cup B)=\dfrac{5}{6} \\
\end{align}$
So, the correct answer is “Option A”.
Note: The representations must be carefully chosen. When we say A or B, we will be using $A\cup B$ . When we say A and B, we will be using $A\cap B$ . Also, you may make mistakes by writing the equation for $P(A\cup B)$ as $P(A\cup B)=P\left( A \right)+P\left( B \right)+P\left( A\cap B \right)$ .
Complete step by step answer:
We need to find the probability of the occurrence of a number that is odd or less than 5 when a fair die is rolled.
We know that when a die is thrown, the sample space will be given by
$S=\left\{ 1,2,3,4,5,6 \right\}$
Of these, the odd numbers are $\left\{ 1,3,5 \right\}$
Let us consider A to be the set of odd numbers occurring when the die is thrown. This is given as
$A=\left\{ 1,3,5 \right\}...(i)$
Let us consider B to be the numbers less than 5 and will be
$B=\left\{ 1,2,3,4 \right\}...(ii)$
Let us now calculate the probability of odd numbers.
$P(A)=\dfrac{\text{Number of favourable outcomes}}{\text{Total number of outcomes}}$
From S, we know that the total number of outcomes =6.
From A, number of favourable outcomes =3
Thus,
$P(A)=\dfrac{3}{6}=\dfrac{1}{2}...(iii)$
Now, let us now calculate the probability of odd numbers less than 5.
From B, number of favourable outcomes =2
$P(B)=\dfrac{4}{\text{6}}=\dfrac{2}{3}...(iv)$
We need to find the probability of occurrence of a number that is odd or less than 5. This is denoted as \[P\left( A\cup B \right)\] .
We know that $P(A\cup B)=P\left( A \right)+P\left( B \right)-P\left( A\cap B \right)...(a)$
$P\left( A\cap B \right)$ is the probability of occurrences common to both A and B.
We can see from (i) and (ii) that
$A\cap B=\left\{ 1,3 \right\}$
Now, we can find $P\left( A\cap B \right)$ .
$P\left( A\cap B \right)=\dfrac{2}{6}=\dfrac{1}{3}...(v)$
Let us substitute (iii), (iv) and (v) in (a). We get
$\begin{align}
& P(A\cup B)=\dfrac{1}{2}+\dfrac{2}{3}-\dfrac{1}{3} \\
& \Rightarrow P(A\cup B)=\dfrac{5}{6} \\
\end{align}$
So, the correct answer is “Option A”.
Note: The representations must be carefully chosen. When we say A or B, we will be using $A\cup B$ . When we say A and B, we will be using $A\cap B$ . Also, you may make mistakes by writing the equation for $P(A\cup B)$ as $P(A\cup B)=P\left( A \right)+P\left( B \right)+P\left( A\cap B \right)$ .
Recently Updated Pages
One difference between a Formal Letter and an informal class null english null
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What is the chemical name of Iron class 11 chemistry CBSE
The dimensional formula of dielectric strength A M1L1T2Q class 11 physics CBSE
The members of the Municipal Corporation are elected class 11 social science CBSE
What is spore formation class 11 biology CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE