Answer
Verified
492k+ views
Hint: We need to know about what is meant by event then what does sure event imply then according to that by using the probability formula we can get the result.
\[P\left( A \right)=\dfrac{m}{n}=\dfrac{\text{number of favorable outcomes}}{\text{total number of possible outcomes}}\]
Complete step-by-step answer:
Let us look into some basic definitions at first.
TRIAL: Let a random experiment be repeated under identical conditions then the experiment is called a trial.
OUTCOME: A possible result of a random experiment is called its outcome.
SAMPLE SPACE: The set of all possible outcomes of an experiment is called the sample space of the experiment and is denoted by S.
SAMPLE POINT: The outcome of an experiment is called sample point.
EVENT: A subset of the sample space associated with a random experiment is said to occur, if any one of the elementary events associated to it is an outcome.
SURE EVENT: An event which must occur, whatever be the outcome is called a sure event or certain event.
PROBABILITY: If there are n elementary events associated with a random experiment and m of them are favorable to an event A, then the probability of happening or occurrence of A, denoted by P(A), is given by
\[P\left( A \right)=\dfrac{m}{n}=\dfrac{\text{number of favorable outcomes}}{\text{total number of possible outcomes}}\]
Now, by looking into the definition of sure event we can say that:
Sure event is an event which happens always whenever the experiment is performed.
It implies that the number of favorable outcomes is equal to the total number of possible outcomes.
\[\begin{align}
& \Rightarrow \text{number of favorable outcomes}=\text{total number of possible outcomes} \\
& \Rightarrow m=n \\
& \Rightarrow P\left( A \right)\text{=}\dfrac{m}{n} \\
& \therefore P\left( A \right)\text{=}1\text{ } \\
\end{align}\]
Hence, the correct option is (a).
Note: Consider an example related to sure event, If a dice is rolled then the event of occurring a digit greater than 0 is called sure event .Here, total number of possible outcomes are 6 and the number of favorable outcomes is also 6.
\[\begin{align}
& \Rightarrow m=n=6 \\
& \Rightarrow P\left( A \right)\text{=}\dfrac{m}{n} \\
& \Rightarrow P\left( A \right)\text{=}\dfrac{6}{6} \\
& \therefore P\left( A \right)\text{=}1\text{ } \\
\end{align}\]
It is important to note that in a sure event the number of favorable outcomes is equal to the total number of possible outcomes. Therefore, the probability of a sure event is 1.
We can also directly say that the probability of a sure event is 1 because it should occur whatever may be the outcome but doing it elaborately gives much idea.
\[P\left( A \right)=\dfrac{m}{n}=\dfrac{\text{number of favorable outcomes}}{\text{total number of possible outcomes}}\]
Complete step-by-step answer:
Let us look into some basic definitions at first.
TRIAL: Let a random experiment be repeated under identical conditions then the experiment is called a trial.
OUTCOME: A possible result of a random experiment is called its outcome.
SAMPLE SPACE: The set of all possible outcomes of an experiment is called the sample space of the experiment and is denoted by S.
SAMPLE POINT: The outcome of an experiment is called sample point.
EVENT: A subset of the sample space associated with a random experiment is said to occur, if any one of the elementary events associated to it is an outcome.
SURE EVENT: An event which must occur, whatever be the outcome is called a sure event or certain event.
PROBABILITY: If there are n elementary events associated with a random experiment and m of them are favorable to an event A, then the probability of happening or occurrence of A, denoted by P(A), is given by
\[P\left( A \right)=\dfrac{m}{n}=\dfrac{\text{number of favorable outcomes}}{\text{total number of possible outcomes}}\]
Now, by looking into the definition of sure event we can say that:
Sure event is an event which happens always whenever the experiment is performed.
It implies that the number of favorable outcomes is equal to the total number of possible outcomes.
\[\begin{align}
& \Rightarrow \text{number of favorable outcomes}=\text{total number of possible outcomes} \\
& \Rightarrow m=n \\
& \Rightarrow P\left( A \right)\text{=}\dfrac{m}{n} \\
& \therefore P\left( A \right)\text{=}1\text{ } \\
\end{align}\]
Hence, the correct option is (a).
Note: Consider an example related to sure event, If a dice is rolled then the event of occurring a digit greater than 0 is called sure event .Here, total number of possible outcomes are 6 and the number of favorable outcomes is also 6.
\[\begin{align}
& \Rightarrow m=n=6 \\
& \Rightarrow P\left( A \right)\text{=}\dfrac{m}{n} \\
& \Rightarrow P\left( A \right)\text{=}\dfrac{6}{6} \\
& \therefore P\left( A \right)\text{=}1\text{ } \\
\end{align}\]
It is important to note that in a sure event the number of favorable outcomes is equal to the total number of possible outcomes. Therefore, the probability of a sure event is 1.
We can also directly say that the probability of a sure event is 1 because it should occur whatever may be the outcome but doing it elaborately gives much idea.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE