
How to prime factorise the number $104$?
Answer
464.4k+ views
Hint: To solve this given problem, we should divide the given number with a least prime number and we have to repeat it until it is left with a pair of prime numbers. And at last, pick and write every prime number in the factors, by which we divided the number.
Complete step-by-step solution:
To factorize the given number with a prime number, we have to divide again and again with the least divisible prime numbers. Let us consider the given number which is $104$, And the least prime number we can divide the given number is $2$. When we do so we get the number $2$ and $52$. Now not down that $2$ and again divide the other number with the least prime number which is $2$. And we get $2$ and $26$. Now note down the $2$, and repeat the process again, we get $2$ and $13$. And the prime factor for the number $104$ are $2 \times 2 \times 2 \times 13$, which can also be written as,
Prime factor of $104$$ = {2^3} \times 13$.
In mathematically it can be written as,
$104 = \dfrac{{104}}{2} = \dfrac{{52}}{2} = \dfrac{{26}}{2} = 13$
And we should pick the prime numbers alone from the process. We get ${2^3} \times 13$.
Note: The process has to be repeated until the other number on the right side is divided by the pair of prime numbers. Start with the least prime number if the given number is not divisible by $2$, then go for $3$ and so on until the number is divided by the prime number.
Complete step-by-step solution:
To factorize the given number with a prime number, we have to divide again and again with the least divisible prime numbers. Let us consider the given number which is $104$, And the least prime number we can divide the given number is $2$. When we do so we get the number $2$ and $52$. Now not down that $2$ and again divide the other number with the least prime number which is $2$. And we get $2$ and $26$. Now note down the $2$, and repeat the process again, we get $2$ and $13$. And the prime factor for the number $104$ are $2 \times 2 \times 2 \times 13$, which can also be written as,
Prime factor of $104$$ = {2^3} \times 13$.
In mathematically it can be written as,
$104 = \dfrac{{104}}{2} = \dfrac{{52}}{2} = \dfrac{{26}}{2} = 13$
And we should pick the prime numbers alone from the process. We get ${2^3} \times 13$.
Note: The process has to be repeated until the other number on the right side is divided by the pair of prime numbers. Start with the least prime number if the given number is not divisible by $2$, then go for $3$ and so on until the number is divided by the prime number.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE

What is pollution? How many types of pollution? Define it

The largest brackish water lake in India is A Wular class 9 biology CBSE
