
\[PQ\] is a double ordinate of a parabola. Find the locus of its point of trisection.
Answer
525.6k+ views
Hint: Use the section formula
\[x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n};y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}\]
In between extremities of double ordinate.
Given that \[PQ\] is double ordinate of parabola.
We have to find the locus of points of trisection of double ordinate.
Let’s take the standard equation of parabola.
\[\Rightarrow {{y}^{2}}=4ax\]
\[x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n};y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}\]
In between extremities of double ordinate.
Given that \[PQ\] is double ordinate of parabola.
We have to find the locus of points of trisection of double ordinate.
Let’s take the standard equation of parabola.
\[\Rightarrow {{y}^{2}}=4ax\]
We know that \[PQ\] is double ordinate of given parabola.
Therefore, \[PQ\bot OA\]
We know that any general point on parabola \[{{y}^{2}}=4ax\]is \[\left( x,y \right)=\left( a{{t}^{2}},2at \right)\].
Therefore, \[P=\left( a{{t}^{2}},2at \right)\]
As \[P\] and \[Q\] are symmetrical along x-axis.
Therefore, \[Q=\left( a{{t}^{2}},-2at \right)\]
Let \[R\] and \[S\] be the point of trisection of double ordinate.
Therefore, \[PR=RS=SQ.....\left( i \right)\]
Let \[R\] divide the \[PQ\]in the ratio \[\dfrac{m}{n}=\dfrac{PR}{RQ}\].
Substitute\[RQ=RS+SQ\].
\[\dfrac{m}{n}=\dfrac{PR}{RQ}=\dfrac{PS}{RS+SQ}\]
Putting \[RS=SQ=PR\left[ \text{from equation }\left( i \right) \right]\]
\[\dfrac{m}{n}=\dfrac{PR}{RQ}=\dfrac{PR}{PR+PR}=\dfrac{PR}{2PR}\]
Therefore, we get \[\dfrac{m}{n}=\dfrac{1}{2}\]
Therefore, \[R\] divides \[PQ\] in ratio\[\dfrac{m}{n}=\dfrac{1}{2}\].
By section formula,
\[x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n}....\left( ii \right)\]
\[y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}....\left( iii \right)\]
Here, \[P\left( {{x}_{1}},{{y}_{1}} \right)=P\left( a{{t}^{2}},2at \right)\]
\[Q\left( {{x}_{2}},{{y}_{2}} \right)=Q\left( a{{t}^{2}},-2at \right)\]
\[R\left( x,y \right)=R\left( h,k \right)\]
Putting values in equation\[\left( ii \right)\]and equation\[\left( iii \right)\].
Therefore, \[h=\dfrac{1\left( a{{t}^{2}} \right)+2\left( a{{t}^{2}} \right)}{3}\], \[k=\dfrac{1\left( -2at \right)+2\left( 2at \right)}{3}\]
We get, \[h=\dfrac{3a{{t}^{2}}}{3}=a{{t}^{2}}....\left( iv \right)\], \[k=\dfrac{2at}{3}....\left( v \right)\]
From equation\[\left( v \right)\], we get \[t=\dfrac{3k}{2a}\]
Putting value of \[t\] in equation \[\left( iv \right)\].
\[\Rightarrow h=a{{t}^{2}}\]
\[h=a{{\left( \dfrac{3k}{2a} \right)}^{2}}\]
Therefore we get \[9{{k}^{2}}=4ah\]
Therefore, locus of point of intersection is \[9{{y}^{2}}=4ax\].
Note:
Parabola taken in the problem must be standard parabola. Many students make errors while using section formula and reverse the points.
Therefore, \[PQ\bot OA\]
We know that any general point on parabola \[{{y}^{2}}=4ax\]is \[\left( x,y \right)=\left( a{{t}^{2}},2at \right)\].
Therefore, \[P=\left( a{{t}^{2}},2at \right)\]
As \[P\] and \[Q\] are symmetrical along x-axis.
Therefore, \[Q=\left( a{{t}^{2}},-2at \right)\]
Let \[R\] and \[S\] be the point of trisection of double ordinate.
Therefore, \[PR=RS=SQ.....\left( i \right)\]
Let \[R\] divide the \[PQ\]in the ratio \[\dfrac{m}{n}=\dfrac{PR}{RQ}\].
Substitute\[RQ=RS+SQ\].
\[\dfrac{m}{n}=\dfrac{PR}{RQ}=\dfrac{PS}{RS+SQ}\]
Putting \[RS=SQ=PR\left[ \text{from equation }\left( i \right) \right]\]
\[\dfrac{m}{n}=\dfrac{PR}{RQ}=\dfrac{PR}{PR+PR}=\dfrac{PR}{2PR}\]
Therefore, we get \[\dfrac{m}{n}=\dfrac{1}{2}\]
Therefore, \[R\] divides \[PQ\] in ratio\[\dfrac{m}{n}=\dfrac{1}{2}\].
By section formula,
\[x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n}....\left( ii \right)\]
\[y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}....\left( iii \right)\]
Here, \[P\left( {{x}_{1}},{{y}_{1}} \right)=P\left( a{{t}^{2}},2at \right)\]
\[Q\left( {{x}_{2}},{{y}_{2}} \right)=Q\left( a{{t}^{2}},-2at \right)\]
\[R\left( x,y \right)=R\left( h,k \right)\]
Putting values in equation\[\left( ii \right)\]and equation\[\left( iii \right)\].
Therefore, \[h=\dfrac{1\left( a{{t}^{2}} \right)+2\left( a{{t}^{2}} \right)}{3}\], \[k=\dfrac{1\left( -2at \right)+2\left( 2at \right)}{3}\]
We get, \[h=\dfrac{3a{{t}^{2}}}{3}=a{{t}^{2}}....\left( iv \right)\], \[k=\dfrac{2at}{3}....\left( v \right)\]
From equation\[\left( v \right)\], we get \[t=\dfrac{3k}{2a}\]
Putting value of \[t\] in equation \[\left( iv \right)\].
\[\Rightarrow h=a{{t}^{2}}\]
\[h=a{{\left( \dfrac{3k}{2a} \right)}^{2}}\]
Therefore we get \[9{{k}^{2}}=4ah\]
Therefore, locus of point of intersection is \[9{{y}^{2}}=4ax\].
Note:
Parabola taken in the problem must be standard parabola. Many students make errors while using section formula and reverse the points.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
