\[PQ\] is a double ordinate of a parabola. Find the locus of its point of trisection.
Last updated date: 26th Mar 2023
•
Total views: 309.9k
•
Views today: 8.87k
Answer
309.9k+ views
Hint: Use the section formula
\[x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n};y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}\]
In between extremities of double ordinate.
Given that \[PQ\] is double ordinate of parabola.
We have to find the locus of points of trisection of double ordinate.
Let’s take the standard equation of parabola.
\[\Rightarrow {{y}^{2}}=4ax\]
\[x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n};y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}\]
In between extremities of double ordinate.
Given that \[PQ\] is double ordinate of parabola.
We have to find the locus of points of trisection of double ordinate.
Let’s take the standard equation of parabola.
\[\Rightarrow {{y}^{2}}=4ax\]
We know that \[PQ\] is double ordinate of given parabola.
Therefore, \[PQ\bot OA\]
We know that any general point on parabola \[{{y}^{2}}=4ax\]is \[\left( x,y \right)=\left( a{{t}^{2}},2at \right)\].
Therefore, \[P=\left( a{{t}^{2}},2at \right)\]
As \[P\] and \[Q\] are symmetrical along x-axis.
Therefore, \[Q=\left( a{{t}^{2}},-2at \right)\]
Let \[R\] and \[S\] be the point of trisection of double ordinate.
Therefore, \[PR=RS=SQ.....\left( i \right)\]
Let \[R\] divide the \[PQ\]in the ratio \[\dfrac{m}{n}=\dfrac{PR}{RQ}\].
Substitute\[RQ=RS+SQ\].
\[\dfrac{m}{n}=\dfrac{PR}{RQ}=\dfrac{PS}{RS+SQ}\]
Putting \[RS=SQ=PR\left[ \text{from equation }\left( i \right) \right]\]
\[\dfrac{m}{n}=\dfrac{PR}{RQ}=\dfrac{PR}{PR+PR}=\dfrac{PR}{2PR}\]
Therefore, we get \[\dfrac{m}{n}=\dfrac{1}{2}\]
Therefore, \[R\] divides \[PQ\] in ratio\[\dfrac{m}{n}=\dfrac{1}{2}\].
By section formula,
\[x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n}....\left( ii \right)\]
\[y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}....\left( iii \right)\]
Here, \[P\left( {{x}_{1}},{{y}_{1}} \right)=P\left( a{{t}^{2}},2at \right)\]
\[Q\left( {{x}_{2}},{{y}_{2}} \right)=Q\left( a{{t}^{2}},-2at \right)\]
\[R\left( x,y \right)=R\left( h,k \right)\]
Putting values in equation\[\left( ii \right)\]and equation\[\left( iii \right)\].
Therefore, \[h=\dfrac{1\left( a{{t}^{2}} \right)+2\left( a{{t}^{2}} \right)}{3}\], \[k=\dfrac{1\left( -2at \right)+2\left( 2at \right)}{3}\]
We get, \[h=\dfrac{3a{{t}^{2}}}{3}=a{{t}^{2}}....\left( iv \right)\], \[k=\dfrac{2at}{3}....\left( v \right)\]
From equation\[\left( v \right)\], we get \[t=\dfrac{3k}{2a}\]
Putting value of \[t\] in equation \[\left( iv \right)\].
\[\Rightarrow h=a{{t}^{2}}\]
\[h=a{{\left( \dfrac{3k}{2a} \right)}^{2}}\]
Therefore we get \[9{{k}^{2}}=4ah\]
Therefore, locus of point of intersection is \[9{{y}^{2}}=4ax\].
Note:
Parabola taken in the problem must be standard parabola. Many students make errors while using section formula and reverse the points.
Therefore, \[PQ\bot OA\]
We know that any general point on parabola \[{{y}^{2}}=4ax\]is \[\left( x,y \right)=\left( a{{t}^{2}},2at \right)\].
Therefore, \[P=\left( a{{t}^{2}},2at \right)\]
As \[P\] and \[Q\] are symmetrical along x-axis.
Therefore, \[Q=\left( a{{t}^{2}},-2at \right)\]
Let \[R\] and \[S\] be the point of trisection of double ordinate.
Therefore, \[PR=RS=SQ.....\left( i \right)\]
Let \[R\] divide the \[PQ\]in the ratio \[\dfrac{m}{n}=\dfrac{PR}{RQ}\].
Substitute\[RQ=RS+SQ\].
\[\dfrac{m}{n}=\dfrac{PR}{RQ}=\dfrac{PS}{RS+SQ}\]
Putting \[RS=SQ=PR\left[ \text{from equation }\left( i \right) \right]\]
\[\dfrac{m}{n}=\dfrac{PR}{RQ}=\dfrac{PR}{PR+PR}=\dfrac{PR}{2PR}\]
Therefore, we get \[\dfrac{m}{n}=\dfrac{1}{2}\]
Therefore, \[R\] divides \[PQ\] in ratio\[\dfrac{m}{n}=\dfrac{1}{2}\].
By section formula,
\[x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n}....\left( ii \right)\]
\[y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}....\left( iii \right)\]
Here, \[P\left( {{x}_{1}},{{y}_{1}} \right)=P\left( a{{t}^{2}},2at \right)\]
\[Q\left( {{x}_{2}},{{y}_{2}} \right)=Q\left( a{{t}^{2}},-2at \right)\]
\[R\left( x,y \right)=R\left( h,k \right)\]
Putting values in equation\[\left( ii \right)\]and equation\[\left( iii \right)\].
Therefore, \[h=\dfrac{1\left( a{{t}^{2}} \right)+2\left( a{{t}^{2}} \right)}{3}\], \[k=\dfrac{1\left( -2at \right)+2\left( 2at \right)}{3}\]
We get, \[h=\dfrac{3a{{t}^{2}}}{3}=a{{t}^{2}}....\left( iv \right)\], \[k=\dfrac{2at}{3}....\left( v \right)\]
From equation\[\left( v \right)\], we get \[t=\dfrac{3k}{2a}\]
Putting value of \[t\] in equation \[\left( iv \right)\].
\[\Rightarrow h=a{{t}^{2}}\]
\[h=a{{\left( \dfrac{3k}{2a} \right)}^{2}}\]
Therefore we get \[9{{k}^{2}}=4ah\]
Therefore, locus of point of intersection is \[9{{y}^{2}}=4ax\].
Note:
Parabola taken in the problem must be standard parabola. Many students make errors while using section formula and reverse the points.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
