
\[PQ\] is a double ordinate of a parabola. Find the locus of its point of trisection.
Answer
609.9k+ views
Hint: Use the section formula
\[x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n};y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}\]
In between extremities of double ordinate.
Given that \[PQ\] is double ordinate of parabola.
We have to find the locus of points of trisection of double ordinate.
Let’s take the standard equation of parabola.
\[\Rightarrow {{y}^{2}}=4ax\]
\[x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n};y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}\]
In between extremities of double ordinate.
Given that \[PQ\] is double ordinate of parabola.
We have to find the locus of points of trisection of double ordinate.
Let’s take the standard equation of parabola.
\[\Rightarrow {{y}^{2}}=4ax\]
We know that \[PQ\] is double ordinate of given parabola.
Therefore, \[PQ\bot OA\]
We know that any general point on parabola \[{{y}^{2}}=4ax\]is \[\left( x,y \right)=\left( a{{t}^{2}},2at \right)\].
Therefore, \[P=\left( a{{t}^{2}},2at \right)\]
As \[P\] and \[Q\] are symmetrical along x-axis.
Therefore, \[Q=\left( a{{t}^{2}},-2at \right)\]
Let \[R\] and \[S\] be the point of trisection of double ordinate.
Therefore, \[PR=RS=SQ.....\left( i \right)\]
Let \[R\] divide the \[PQ\]in the ratio \[\dfrac{m}{n}=\dfrac{PR}{RQ}\].
Substitute\[RQ=RS+SQ\].
\[\dfrac{m}{n}=\dfrac{PR}{RQ}=\dfrac{PS}{RS+SQ}\]
Putting \[RS=SQ=PR\left[ \text{from equation }\left( i \right) \right]\]
\[\dfrac{m}{n}=\dfrac{PR}{RQ}=\dfrac{PR}{PR+PR}=\dfrac{PR}{2PR}\]
Therefore, we get \[\dfrac{m}{n}=\dfrac{1}{2}\]
Therefore, \[R\] divides \[PQ\] in ratio\[\dfrac{m}{n}=\dfrac{1}{2}\].
By section formula,
\[x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n}....\left( ii \right)\]
\[y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}....\left( iii \right)\]
Here, \[P\left( {{x}_{1}},{{y}_{1}} \right)=P\left( a{{t}^{2}},2at \right)\]
\[Q\left( {{x}_{2}},{{y}_{2}} \right)=Q\left( a{{t}^{2}},-2at \right)\]
\[R\left( x,y \right)=R\left( h,k \right)\]
Putting values in equation\[\left( ii \right)\]and equation\[\left( iii \right)\].
Therefore, \[h=\dfrac{1\left( a{{t}^{2}} \right)+2\left( a{{t}^{2}} \right)}{3}\], \[k=\dfrac{1\left( -2at \right)+2\left( 2at \right)}{3}\]
We get, \[h=\dfrac{3a{{t}^{2}}}{3}=a{{t}^{2}}....\left( iv \right)\], \[k=\dfrac{2at}{3}....\left( v \right)\]
From equation\[\left( v \right)\], we get \[t=\dfrac{3k}{2a}\]
Putting value of \[t\] in equation \[\left( iv \right)\].
\[\Rightarrow h=a{{t}^{2}}\]
\[h=a{{\left( \dfrac{3k}{2a} \right)}^{2}}\]
Therefore we get \[9{{k}^{2}}=4ah\]
Therefore, locus of point of intersection is \[9{{y}^{2}}=4ax\].
Note:
Parabola taken in the problem must be standard parabola. Many students make errors while using section formula and reverse the points.
Therefore, \[PQ\bot OA\]
We know that any general point on parabola \[{{y}^{2}}=4ax\]is \[\left( x,y \right)=\left( a{{t}^{2}},2at \right)\].
Therefore, \[P=\left( a{{t}^{2}},2at \right)\]
As \[P\] and \[Q\] are symmetrical along x-axis.
Therefore, \[Q=\left( a{{t}^{2}},-2at \right)\]
Let \[R\] and \[S\] be the point of trisection of double ordinate.
Therefore, \[PR=RS=SQ.....\left( i \right)\]
Let \[R\] divide the \[PQ\]in the ratio \[\dfrac{m}{n}=\dfrac{PR}{RQ}\].
Substitute\[RQ=RS+SQ\].
\[\dfrac{m}{n}=\dfrac{PR}{RQ}=\dfrac{PS}{RS+SQ}\]
Putting \[RS=SQ=PR\left[ \text{from equation }\left( i \right) \right]\]
\[\dfrac{m}{n}=\dfrac{PR}{RQ}=\dfrac{PR}{PR+PR}=\dfrac{PR}{2PR}\]
Therefore, we get \[\dfrac{m}{n}=\dfrac{1}{2}\]
Therefore, \[R\] divides \[PQ\] in ratio\[\dfrac{m}{n}=\dfrac{1}{2}\].
By section formula,
\[x=\dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n}....\left( ii \right)\]
\[y=\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n}....\left( iii \right)\]
Here, \[P\left( {{x}_{1}},{{y}_{1}} \right)=P\left( a{{t}^{2}},2at \right)\]
\[Q\left( {{x}_{2}},{{y}_{2}} \right)=Q\left( a{{t}^{2}},-2at \right)\]
\[R\left( x,y \right)=R\left( h,k \right)\]
Putting values in equation\[\left( ii \right)\]and equation\[\left( iii \right)\].
Therefore, \[h=\dfrac{1\left( a{{t}^{2}} \right)+2\left( a{{t}^{2}} \right)}{3}\], \[k=\dfrac{1\left( -2at \right)+2\left( 2at \right)}{3}\]
We get, \[h=\dfrac{3a{{t}^{2}}}{3}=a{{t}^{2}}....\left( iv \right)\], \[k=\dfrac{2at}{3}....\left( v \right)\]
From equation\[\left( v \right)\], we get \[t=\dfrac{3k}{2a}\]
Putting value of \[t\] in equation \[\left( iv \right)\].
\[\Rightarrow h=a{{t}^{2}}\]
\[h=a{{\left( \dfrac{3k}{2a} \right)}^{2}}\]
Therefore we get \[9{{k}^{2}}=4ah\]
Therefore, locus of point of intersection is \[9{{y}^{2}}=4ax\].
Note:
Parabola taken in the problem must be standard parabola. Many students make errors while using section formula and reverse the points.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

