
Phosphoric acid is used in carbonated beverages containing 3.086% (w/w) hydrogen, 31.61% (w/w) phosphorous and remaining oxygen. If the atomic mass of hydrogen, phosphorus and oxygen are 1.01U, 31.0U and 16U respectively. And if the molar mass of phosphoric acid is 98.03 g/mol. What is the molecular formula of phosphoric acid?
Answer
484.5k+ views
Hint: There are three types of formula in the chemistry i.e. empirical, molecular and structural formula. The empirical formula gives us the simplest ratio of the atoms present in the compound whereas the molecular formula tells us about the total no. of each atom in a molecule and structural formula shows the bonding of an atom.
Formula used:
Complete step by step answer:
- In the given question, it is given that the mass percent of hydrogen and phosphorus is 3.086 % and 31.61 % respectively.
- So, we can calculate the mass % of oxygen by subtracting the addition of mass percent of hydrogen and phosphorus from 100 i.e.
$=100\text{ - ( 3}\text{.086 -31}\text{.61)}\ \text{= 65}\text{.304 }\!\!%\!\!\text{ }$
- It is given that the atomic mass of H, P and O are 1.01u, 31.0u and 16u respectively.
-So, we can calculate the empirical formula of phosphoric acid i.e.
- So, the empirical formula will be ${{\text{H}}_{3}}\text{P}{{\text{O}}_{4}}$.
- Now, the empirical mass of the compound will be:
$3\ \cdot \text{ 1}\text{.01 + }31\ \cdot \text{ 1}\ \text{+ 4}\ \cdot \text{ 1}6\text{ = 98}\text{.03u}$
- It is given that the molar mass of the compound is 98.03u so the molecular mass will be calculated by dividing molar mass by empirical mass i.e. $\frac{98.03}{98.03}\ \text{= 1}$.
- Now, by multiplying the 1 by the subscript of the empirical formula we will get the molecular formula and it is ${{\text{H}}_{3}}\text{P}{{\text{O}}_{4}}$.
So, the correct answer is “${{\text{H}}_{3}}\text{P}{{\text{O}}_{4}}$”.
Note: The empirical formula and molecular formula have a great role because they can be used to determine the general formula of a compound & also the type of molecule and balancing the equations respectively.
Formula used:
Complete step by step answer:
- In the given question, it is given that the mass percent of hydrogen and phosphorus is 3.086 % and 31.61 % respectively.
- So, we can calculate the mass % of oxygen by subtracting the addition of mass percent of hydrogen and phosphorus from 100 i.e.
$=100\text{ - ( 3}\text{.086 -31}\text{.61)}\ \text{= 65}\text{.304 }\!\!%\!\!\text{ }$
- It is given that the atomic mass of H, P and O are 1.01u, 31.0u and 16u respectively.
-So, we can calculate the empirical formula of phosphoric acid i.e.
Element | Mass Percent | Atomic mass | Relative no. of atoms | Simplest atomic ratio | Simplest whole no. ratio |
H | 3.086 | 1.01 | $\frac{3.086}{1.01}\text{ = 3}\text{.055}$ | $\frac{3.055}{1.02}\text{ = 3}$ | 3 |
P | 31.61 | 31.0 | $\frac{31.61}{31}\text{ = 1}\text{.02}$ | $\frac{1.02}{1.02}\text{ = 1}$ | 1 |
O | 65.304 | 16 | $\frac{65.304}{16}\text{ = 4}\text{.08}$ | $\frac{4.08}{1.02}\text{ = 4}$ | 4 |
- So, the empirical formula will be ${{\text{H}}_{3}}\text{P}{{\text{O}}_{4}}$.
- Now, the empirical mass of the compound will be:
$3\ \cdot \text{ 1}\text{.01 + }31\ \cdot \text{ 1}\ \text{+ 4}\ \cdot \text{ 1}6\text{ = 98}\text{.03u}$
- It is given that the molar mass of the compound is 98.03u so the molecular mass will be calculated by dividing molar mass by empirical mass i.e. $\frac{98.03}{98.03}\ \text{= 1}$.
- Now, by multiplying the 1 by the subscript of the empirical formula we will get the molecular formula and it is ${{\text{H}}_{3}}\text{P}{{\text{O}}_{4}}$.
So, the correct answer is “${{\text{H}}_{3}}\text{P}{{\text{O}}_{4}}$”.
Note: The empirical formula and molecular formula have a great role because they can be used to determine the general formula of a compound & also the type of molecule and balancing the equations respectively.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
