What is the pH of a millimolar solution of ammonium hydroxide which is 20 % dissociated?
(A) 3.699
(B) 10.301
(C) 4.691
(D) 9.301
Answer
Verified
450.9k+ views
Hint:. We know that ammonium hydroxide is the weak base, therefore \[O{H^ - }\] ions will dissociate partially. From the data given in the question we can calculate the concentration and degree of dissociation of \[O{H^ - }\] ions. Later by using the relationship to pH and pOH we can easily calculate pH of a millimolar solution of ammonium hydroxide which is 20% dissociated.
Complete step by step answer:
In the question they have asked us to find the pH of millimolar solution of ammonium hydroxide which is 20 % dissociated.
Let us start finding the concentration of the \[N{H_4}OH\] solution. It has been shown that \[N{H_4}OH\] is present in millimolar concentration.
\[N{H_4}OH = 0.001M\]……. (1)
The ammonium hydroxide is a weak base, so \[N{H_4}OH\] will dissociate as \[O{H^ - }\] ions partially.
The degree of dissociation of \[N{H_4}OH\] is 20 %
degree of dissociation \[ = 20\% = \dfrac{{20}}{{100}} = 0.2\]……. (2)
From the above value concentration of \[O{H^ - }\]ions can be calculated
\[{\text{Concentration of O}}{{\text{H}}^{\text{ - }}}{\text{ = Concentration of solution}} \times {\text{degree of dissociation}}\]
\[[O{H^ - }] = 0.001 \times 0.2 = 2 \times {10^{ - 4}}\]…… (3)
We know that water has pOH = 7
Therefore, the concentration of \[O{H^ - }\] ions will be
\[pOH = - \log [O{H^ - }]\]……... (4)
\[7 = - \log [O{H^ - }]\]
\[[O{H^ - }] = {10^{ - 7}}\]….…... (5)
- To find the total concentration of \[O{H^ - }\] we should add equation (3) and (5)
\[total [O{H^ - }] = (2 \times {10^{ - 4}}) + {10^{ - 7}}\]
\[total [O{H^ - }] = {10^{ - 4}}(2 + 0.001)\]
\[total [O{H^ - }] = 2.001 \times {10^{ - 4}}\]
- Substituting \[[O{H^ - }]\] in equation (4)
\[pOH = - \log (2.001 \times {10^{ - 4}})\]
\[pOH = 3.6988\]
pH can be calculated using the equation
\[pH = 14 - pOH\]…… (6)
\[pH = 14 - 3.6988\]
\[pH = 10.301\]
The pH of a millimolar solution of ammonium hydroxide which is 20 % dissociated is 10.301.
So, the correct answer is “Option B”.
Additional information:
Acids and bases are measured using pH or pOH scale. This scale provides the measure of \[{H^ + }\] or \[O{H^ - }\] ion concentration.
- When we measure acids, then pH scale will give values less than 7, while pOH scale will give values greater than 7.
- When we measure bases, then pH scale will give values greater than 7, while pOH scale will give values less than 7.
Note: After getting the value of pOH we should not conclude the answer. Since in question they have asked for the pH value. pH and pOH are not the same. So, we should not get confused with that. We should be using that pOH value and substitute it in the equation (6) in order to obtain the pH.
Complete step by step answer:
In the question they have asked us to find the pH of millimolar solution of ammonium hydroxide which is 20 % dissociated.
Let us start finding the concentration of the \[N{H_4}OH\] solution. It has been shown that \[N{H_4}OH\] is present in millimolar concentration.
\[N{H_4}OH = 0.001M\]……. (1)
The ammonium hydroxide is a weak base, so \[N{H_4}OH\] will dissociate as \[O{H^ - }\] ions partially.
The degree of dissociation of \[N{H_4}OH\] is 20 %
degree of dissociation \[ = 20\% = \dfrac{{20}}{{100}} = 0.2\]……. (2)
From the above value concentration of \[O{H^ - }\]ions can be calculated
\[{\text{Concentration of O}}{{\text{H}}^{\text{ - }}}{\text{ = Concentration of solution}} \times {\text{degree of dissociation}}\]
\[[O{H^ - }] = 0.001 \times 0.2 = 2 \times {10^{ - 4}}\]…… (3)
We know that water has pOH = 7
Therefore, the concentration of \[O{H^ - }\] ions will be
\[pOH = - \log [O{H^ - }]\]……... (4)
\[7 = - \log [O{H^ - }]\]
\[[O{H^ - }] = {10^{ - 7}}\]….…... (5)
- To find the total concentration of \[O{H^ - }\] we should add equation (3) and (5)
\[total [O{H^ - }] = (2 \times {10^{ - 4}}) + {10^{ - 7}}\]
\[total [O{H^ - }] = {10^{ - 4}}(2 + 0.001)\]
\[total [O{H^ - }] = 2.001 \times {10^{ - 4}}\]
- Substituting \[[O{H^ - }]\] in equation (4)
\[pOH = - \log (2.001 \times {10^{ - 4}})\]
\[pOH = 3.6988\]
pH can be calculated using the equation
\[pH = 14 - pOH\]…… (6)
\[pH = 14 - 3.6988\]
\[pH = 10.301\]
The pH of a millimolar solution of ammonium hydroxide which is 20 % dissociated is 10.301.
So, the correct answer is “Option B”.
Additional information:
Acids and bases are measured using pH or pOH scale. This scale provides the measure of \[{H^ + }\] or \[O{H^ - }\] ion concentration.
- When we measure acids, then pH scale will give values less than 7, while pOH scale will give values greater than 7.
- When we measure bases, then pH scale will give values greater than 7, while pOH scale will give values less than 7.
Note: After getting the value of pOH we should not conclude the answer. Since in question they have asked for the pH value. pH and pOH are not the same. So, we should not get confused with that. We should be using that pOH value and substitute it in the equation (6) in order to obtain the pH.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Physics: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE