
Period of $$\cos x\cos \left( 60^{\circ}-x\right) \cos \left( 60^{\circ}+x\right) $$ is
A) $$\dfrac{\pi }{2}$$
B) $$\dfrac{\pi }{3}$$
C) $$\dfrac{2\pi }{3}$$
D) $$\pi$$
Answer
607.2k+ views
Hint: In this question it is given that we have to find the period of $$\cos x\cos \left( 60^{\circ}-x\right) \cos \left( 60^{\circ}+x\right) $$. So in order to get the solution we have to apply some formulas in the appropriate steps in order to get the solution, which are,
$$2\cos A\cos B=\cos \left( A+B\right) +\cos \left( A-B\right) $$.........(1)
$$\cos 2\theta =2\cos^{2} \theta -1$$.......................(2)
$$4\cos^{3} \theta -3\cos \theta =\cos 3\theta$$........(3)
Complete step-by-step solution:
Let, $$f\left( x\right) =\cos x\cos \left( 60^{\circ}-x\right) \cos \left( 60^{\circ}+x\right) $$
$$=\dfrac{1}{2} \cos x\left[ 2\cos \left( 60^{\circ}-x\right) \cos \left( 60^{\circ}+x\right) \right] $$
$$=\dfrac{1}{2} \cos x\left[ 2\cos \left( 60^{\circ}+x\right) \cos \left( 60^{\circ}-x\right) \right] $$
Now applying formula (1) , where A
$$f\left( x\right) =\dfrac{1}{2} \cos x\left[ \cos \left\{ \left( 60^{\circ}+x\right) +\left( 60^{\circ}-x\right) \right\} +\cos \left\{ \left( 60^{\circ}+x\right) -\left( 60^{\circ}-x\right) \right\} \right] $$
$$=\dfrac{1}{2} \cos x\left[ \cos \left( 60^{\circ}+x+60^{\circ}-x\right) +\cos \left( 60^{\circ}+x-60^{\circ}+x\right) \right] $$
$$=\dfrac{1}{2} \cos x\left[ \cos 120^{\circ}+\cos 2x\right] $$
$$=\dfrac{1}{2} \cos x\left( -\dfrac{1}{2} +\cos 2x\right) $$ [ since, $$\cos 120^{\circ} =\dfrac{-1}{2}$$]
$$=\dfrac{1}{2} \cos x\left( -\dfrac{1}{2} +2\cos^{2} x-1\right) $$ [ by formula (2)]
$$=\dfrac{1}{2} \cos x\left( 2\cos^{2} x-\dfrac{3}{2} \right) $$
$$=\cos x\left( \cos^{2} x-\dfrac{3}{4} \right) $$
$$=\cos x\left( \dfrac{4\cos^{2} x-3}{4} \right) $$
$$=\left( \dfrac{4\cos^{3} x-3\cos x}{4} \right) $$
$$=\dfrac{\cos 3x}{4}$$ [ by using formula (3)]
As we know that if $$f\left( x\right) =\cos kx$$ then period is $$\dfrac{2\pi }{\left\vert k\right\vert }$$
So here k=3, therefore, the period of $\cos 3x$ is $$\dfrac{2\pi }{3}$$.
Note: So while solving you need to have the basic idea about the period of a trigonometric function, i.e, the distance between the repetition of any function is called the period of the function or we can say that the length of one complete cycle is called a period.
$$2\cos A\cos B=\cos \left( A+B\right) +\cos \left( A-B\right) $$.........(1)
$$\cos 2\theta =2\cos^{2} \theta -1$$.......................(2)
$$4\cos^{3} \theta -3\cos \theta =\cos 3\theta$$........(3)
Complete step-by-step solution:
Let, $$f\left( x\right) =\cos x\cos \left( 60^{\circ}-x\right) \cos \left( 60^{\circ}+x\right) $$
$$=\dfrac{1}{2} \cos x\left[ 2\cos \left( 60^{\circ}-x\right) \cos \left( 60^{\circ}+x\right) \right] $$
$$=\dfrac{1}{2} \cos x\left[ 2\cos \left( 60^{\circ}+x\right) \cos \left( 60^{\circ}-x\right) \right] $$
Now applying formula (1) , where A
$$f\left( x\right) =\dfrac{1}{2} \cos x\left[ \cos \left\{ \left( 60^{\circ}+x\right) +\left( 60^{\circ}-x\right) \right\} +\cos \left\{ \left( 60^{\circ}+x\right) -\left( 60^{\circ}-x\right) \right\} \right] $$
$$=\dfrac{1}{2} \cos x\left[ \cos \left( 60^{\circ}+x+60^{\circ}-x\right) +\cos \left( 60^{\circ}+x-60^{\circ}+x\right) \right] $$
$$=\dfrac{1}{2} \cos x\left[ \cos 120^{\circ}+\cos 2x\right] $$
$$=\dfrac{1}{2} \cos x\left( -\dfrac{1}{2} +\cos 2x\right) $$ [ since, $$\cos 120^{\circ} =\dfrac{-1}{2}$$]
$$=\dfrac{1}{2} \cos x\left( -\dfrac{1}{2} +2\cos^{2} x-1\right) $$ [ by formula (2)]
$$=\dfrac{1}{2} \cos x\left( 2\cos^{2} x-\dfrac{3}{2} \right) $$
$$=\cos x\left( \cos^{2} x-\dfrac{3}{4} \right) $$
$$=\cos x\left( \dfrac{4\cos^{2} x-3}{4} \right) $$
$$=\left( \dfrac{4\cos^{3} x-3\cos x}{4} \right) $$
$$=\dfrac{\cos 3x}{4}$$ [ by using formula (3)]
As we know that if $$f\left( x\right) =\cos kx$$ then period is $$\dfrac{2\pi }{\left\vert k\right\vert }$$
So here k=3, therefore, the period of $\cos 3x$ is $$\dfrac{2\pi }{3}$$.
Note: So while solving you need to have the basic idea about the period of a trigonometric function, i.e, the distance between the repetition of any function is called the period of the function or we can say that the length of one complete cycle is called a period.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

