P \[\left( -1,4 \right)\], Q \[\left( 11,-8 \right)\] divides AB harmonically in the ratio \[3:2\] then A,B are?
Answer
Verified
438k+ views
Hint:Using the section formula method we first multiply the \[x\] coordinates with the ratio \[3:2\] and then do the same for \[y\] coordinates as well.
For \[x\] coordinates and coordinates of A and B as \[\left( a,b \right)\] and \[\left( x,y \right)\] with ratio
\[\left( m:n \right)\]:
\[\dfrac{mx+na}{m+n}\]
For \[y\] coordinates and coordinates of A and B as \[\left( a,b \right)\] and \[\left( x,y \right)\] with ratio\[\left( m:n \right)\]:
\[\dfrac{my+nb}{m+n}\]
The previous formula was applied for P coordinate and now we will do the same for Q coordinates as well. The ratio of \[3:2\] will change to \[-3:2\] as Q is a harmonic conjugate of P.
Complete step by step solution:
Now as given in the question, we first form a coordinate diagram where P is the midpoint with A, B as extreme and the distance of AP is 3 and the distance of PB is 2.
After this let us form an equation with the help of A's coordinate and B's coordinate with midpoint as
\[\left( -1,4 \right)\].
The equation for the \[a\] or \[x\] coordinate is given as:
\[\Rightarrow \dfrac{3\times x+2\times a}{3+2}=-1\]
\[\Rightarrow 3x+2a=-5\] …(1)
The equation for the \[b\] or \[y\] coordinate is given as:
\[\Rightarrow \dfrac{3\times y+2\times b}{3+2}=4\]
\[\Rightarrow 3y+2b=20\] …(2)
We now find equation for \[x\] and \[y\] with midpoint being \[\left( 11,-8 \right)\] and the ratio of distance from AQ to QB as \[\left( -3:2 \right)\] as Q is harmonic conjugate of P.
The equation for the \[a\] or \[x\] coordinate is given as:
\[\Rightarrow \dfrac{-3\times x+2\times a}{-3+2}=11\]
\[\Rightarrow -3x+2a=-11\] …(3)
The equation for the \[b\] or \[y\] coordinate is given as:
\[\Rightarrow \dfrac{-3\times y+2\times b}{-3+2}=8\]
\[\Rightarrow -3y+2b=8\] …(4)
Now we equate the Equation 1, 2, 3 and 4; So as to find the value of a, b. First we find for the value of a by equating equation 1,3.
\[\begin{align}
& \text{ }3x+2a=-5 \\
& -3x+2a=-11 \\
& \text{ +}4a=-16 \\
\end{align}\]
\[\Rightarrow a=-4\]
We get the value of \[a\] as \[-4\] and to find the value of \[x\] we place the value of \[a\] in \[3x+2a= -5\].
\[\Rightarrow 3x+2\times -4=-5\]
\[\Rightarrow 3x=8-5\]
\[\Rightarrow x=1\]
Then we find for the value of b by Equating equation 2,4.
\[\begin{align}
& \text{ }3y+2b=20 \\
& -3y+2b=8 \\
& \text{ +}4b=28 \\
\end{align}\]
\[\Rightarrow b=7\]
We get the value of \[b\] as \[7\] and to find the value of \[x\] we place the value of \[b\] in \[-3y+2b=8\].
\[\Rightarrow -3y+2\times 7=8\]
\[\Rightarrow -3y=-14+8\]
\[\Rightarrow y=2\]
Therefore, the value of a, b or A, B is given as \[\left( -4:7 \right)\]
Note: The term harmonic conjugate means that if the line is divided let say in ratio of \[\text{AC:BC = AD:BD}\] we can say that C and D are cutting the line AB harmonically and that AB and CD are harmonic conjugates.
For \[x\] coordinates and coordinates of A and B as \[\left( a,b \right)\] and \[\left( x,y \right)\] with ratio
\[\left( m:n \right)\]:
\[\dfrac{mx+na}{m+n}\]
For \[y\] coordinates and coordinates of A and B as \[\left( a,b \right)\] and \[\left( x,y \right)\] with ratio\[\left( m:n \right)\]:
\[\dfrac{my+nb}{m+n}\]
The previous formula was applied for P coordinate and now we will do the same for Q coordinates as well. The ratio of \[3:2\] will change to \[-3:2\] as Q is a harmonic conjugate of P.
Complete step by step solution:
Now as given in the question, we first form a coordinate diagram where P is the midpoint with A, B as extreme and the distance of AP is 3 and the distance of PB is 2.
After this let us form an equation with the help of A's coordinate and B's coordinate with midpoint as
\[\left( -1,4 \right)\].
The equation for the \[a\] or \[x\] coordinate is given as:
\[\Rightarrow \dfrac{3\times x+2\times a}{3+2}=-1\]
\[\Rightarrow 3x+2a=-5\] …(1)
The equation for the \[b\] or \[y\] coordinate is given as:
\[\Rightarrow \dfrac{3\times y+2\times b}{3+2}=4\]
\[\Rightarrow 3y+2b=20\] …(2)
We now find equation for \[x\] and \[y\] with midpoint being \[\left( 11,-8 \right)\] and the ratio of distance from AQ to QB as \[\left( -3:2 \right)\] as Q is harmonic conjugate of P.
The equation for the \[a\] or \[x\] coordinate is given as:
\[\Rightarrow \dfrac{-3\times x+2\times a}{-3+2}=11\]
\[\Rightarrow -3x+2a=-11\] …(3)
The equation for the \[b\] or \[y\] coordinate is given as:
\[\Rightarrow \dfrac{-3\times y+2\times b}{-3+2}=8\]
\[\Rightarrow -3y+2b=8\] …(4)
Now we equate the Equation 1, 2, 3 and 4; So as to find the value of a, b. First we find for the value of a by equating equation 1,3.
\[\begin{align}
& \text{ }3x+2a=-5 \\
& -3x+2a=-11 \\
& \text{ +}4a=-16 \\
\end{align}\]
\[\Rightarrow a=-4\]
We get the value of \[a\] as \[-4\] and to find the value of \[x\] we place the value of \[a\] in \[3x+2a= -5\].
\[\Rightarrow 3x+2\times -4=-5\]
\[\Rightarrow 3x=8-5\]
\[\Rightarrow x=1\]
Then we find for the value of b by Equating equation 2,4.
\[\begin{align}
& \text{ }3y+2b=20 \\
& -3y+2b=8 \\
& \text{ +}4b=28 \\
\end{align}\]
\[\Rightarrow b=7\]
We get the value of \[b\] as \[7\] and to find the value of \[x\] we place the value of \[b\] in \[-3y+2b=8\].
\[\Rightarrow -3y+2\times 7=8\]
\[\Rightarrow -3y=-14+8\]
\[\Rightarrow y=2\]
Therefore, the value of a, b or A, B is given as \[\left( -4:7 \right)\]
Note: The term harmonic conjugate means that if the line is divided let say in ratio of \[\text{AC:BC = AD:BD}\] we can say that C and D are cutting the line AB harmonically and that AB and CD are harmonic conjugates.
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE