
Out of the number of four different digits formed from the digits 1, 2, 3, 4, 5, 6, 7, 8, 9, how many of them are greater than 4000 (Repetition is not allowed)?
(a). 2010
(b). \[{}^9{P_4}\]
(c). 2016
(d). None of these
Answer
607.2k+ views
Hint: For the four-digit number to be greater than 4000, the first digit from the left should be equal to or greater than 4 and the remaining 3 digits should be chosen from the remaining digits.
Complete step-by-step answer:
The permutation is defined as each of several possible ways in which a set or number of things can be ordered or arranged.
The number of ways of arranging a thing is equal to the product of the number of them available to be arranged in a particular place.
We are given the digits 1, 2, 3, 4, 5, 6, 7, 8, and 9. We need to form four different digits and find the number of them greater than 4000.
In the first digit from the left, the digits 4, 5, 6, 7, 8, 9 can be chosen making them a total of 6 possibilities.
In the second digit to the left, one number is already chosen, so we have 8 left.
In the third digit to the left, two numbers are already chosen, so we have 7 left.
In the fourth digit to the left, three numbers are already chosen and hence, we have 6 left.
Hence, the total number of ways is the product of the possibilities.
Total ways = \[6 \times 8 \times 7 \times 6\]
Total ways = 2016
Hence, the correct answer is option (c).
Note: You can also find the total number of four different digits greater than 4000 by selection of 4 digits from given numbers 1, 2, 3, 4, 5, 6, 7, 8, 9 and then subtract the number of four-digits less than 4000 which will give numbers greater than 4000 ((Repetition is not allowed).
Complete step-by-step answer:
The permutation is defined as each of several possible ways in which a set or number of things can be ordered or arranged.
The number of ways of arranging a thing is equal to the product of the number of them available to be arranged in a particular place.
We are given the digits 1, 2, 3, 4, 5, 6, 7, 8, and 9. We need to form four different digits and find the number of them greater than 4000.
In the first digit from the left, the digits 4, 5, 6, 7, 8, 9 can be chosen making them a total of 6 possibilities.
In the second digit to the left, one number is already chosen, so we have 8 left.
In the third digit to the left, two numbers are already chosen, so we have 7 left.
In the fourth digit to the left, three numbers are already chosen and hence, we have 6 left.
Hence, the total number of ways is the product of the possibilities.
Total ways = \[6 \times 8 \times 7 \times 6\]
Total ways = 2016
Hence, the correct answer is option (c).
Note: You can also find the total number of four different digits greater than 4000 by selection of 4 digits from given numbers 1, 2, 3, 4, 5, 6, 7, 8, 9 and then subtract the number of four-digits less than 4000 which will give numbers greater than 4000 ((Repetition is not allowed).
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

