# Out of 7 consonants and 4 vowels, the number of words (not necessarily meaningful) that can be made, each consisting of 3 consonants and 2 vowels, is

$\left( a \right)$ 24800

$\left( b \right)$ 25100

$\left( c \right)$ 25200

$\left( d \right)$ 25400

Answer

Verified

209.4k+ views

**Hint:**In this particular question use the concept that the number of ways to select r objects out of n is ${}^n{C_r}$ and the number of arrangements of these r objects is r!, so use these concepts to reach the solution of the question.

**Complete step by step answer:**

Given data:

There are 7 consonants and 4 vowels.

Now we have made a five letter word with or without meaning each consisting 3 consonants and 2 vowels.

Now as we know that the number of ways to select r objects out of n is ${}^n{C_r}$

So the number of ways to select 3 consonants out of 7 is = ${}^7{C_3}$

And the number of ways to select 2 vowels out of 4 vowels is = ${}^4{C_2}$

So 5 letters are chosen now we have to arrange them.

As we all know that the number of ways to arrange n different objects are n!.

So the number of ways to arrange 5 different letters are 5!

So the total number of 5 letter words consisting of 3 consonants and 2 vowels are the multiplication of the above values so we have,

So the total number of 5 letter words consisting of 3 consonants and 2 vowels are = ${}^7{C_3} \times {}^4{C_2} \times 5!$

Now as we know that, ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}},n! = n\left( {n - 1} \right)\left( {n - 2} \right)......$ so using this property we have,

$ \Rightarrow {}^7{C_3} \times {}^4{C_2} \times 5! = \dfrac{{7!}}{{3!\left( {7 - 3} \right)!}} \times \dfrac{{4!}}{{2!\left( {4 - 2} \right)!}} \times \left( {5.4.3.2.1} \right)$

Now simplify we have,

$ \Rightarrow {}^7{C_3} \times {}^4{C_2} \times 5! = \dfrac{{7!}}{{3!\left( 4 \right)!}} \times \dfrac{{4!}}{{2!\left( 2 \right)!}} \times \left( {120} \right)$

$ \Rightarrow {}^7{C_3} \times {}^4{C_2} \times 5! = \dfrac{{7.6.5.4!}}{{3!\left( 4 \right)!}} \times \dfrac{{4.3.2!}}{{2!\left( 2 \right)!}} \times \left( {120} \right)$

$ \Rightarrow {}^7{C_3} \times {}^4{C_2} \times 5! = \dfrac{{7.6.5}}{{3.2.1}} \times \dfrac{{4.3}}{{2.1}} \times \left( {120} \right)$

$ \Rightarrow {}^7{C_3} \times {}^4{C_2} \times 5! = 35 \times 6 \times \left( {120} \right) = 25200$

So this is the required answer.

**So, the correct answer is “Option C”.**

**Note:**Whenever we face such types of questions the key concept we have to remember is that always recall the formula of the combination as well as of the factorial which is given as ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}},n! = n\left( {n - 1} \right)\left( {n - 2} \right)......$, so simplify according to these formulas as above we will get the required answer.

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE