Out of 7 consonants and 4 vowels, the number of words (not necessarily meaningful) that can be made, each consisting of 3 consonants and 2 vowels, is
$\left( a \right)$ 24800
$\left( b \right)$ 25100
$\left( c \right)$ 25200
$\left( d \right)$ 25400
Answer
Verified
479.4k+ views
Hint: In this particular question use the concept that the number of ways to select r objects out of n is ${}^n{C_r}$ and the number of arrangements of these r objects is r!, so use these concepts to reach the solution of the question.
Complete step by step answer:
Given data:
There are 7 consonants and 4 vowels.
Now we have made a five letter word with or without meaning each consisting 3 consonants and 2 vowels.
Now as we know that the number of ways to select r objects out of n is ${}^n{C_r}$
So the number of ways to select 3 consonants out of 7 is = ${}^7{C_3}$
And the number of ways to select 2 vowels out of 4 vowels is = ${}^4{C_2}$
So 5 letters are chosen now we have to arrange them.
As we all know that the number of ways to arrange n different objects are n!.
So the number of ways to arrange 5 different letters are 5!
So the total number of 5 letter words consisting of 3 consonants and 2 vowels are the multiplication of the above values so we have,
So the total number of 5 letter words consisting of 3 consonants and 2 vowels are = ${}^7{C_3} \times {}^4{C_2} \times 5!$
Now as we know that, ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}},n! = n\left( {n - 1} \right)\left( {n - 2} \right)......$ so using this property we have,
$ \Rightarrow {}^7{C_3} \times {}^4{C_2} \times 5! = \dfrac{{7!}}{{3!\left( {7 - 3} \right)!}} \times \dfrac{{4!}}{{2!\left( {4 - 2} \right)!}} \times \left( {5.4.3.2.1} \right)$
Now simplify we have,
$ \Rightarrow {}^7{C_3} \times {}^4{C_2} \times 5! = \dfrac{{7!}}{{3!\left( 4 \right)!}} \times \dfrac{{4!}}{{2!\left( 2 \right)!}} \times \left( {120} \right)$
$ \Rightarrow {}^7{C_3} \times {}^4{C_2} \times 5! = \dfrac{{7.6.5.4!}}{{3!\left( 4 \right)!}} \times \dfrac{{4.3.2!}}{{2!\left( 2 \right)!}} \times \left( {120} \right)$
$ \Rightarrow {}^7{C_3} \times {}^4{C_2} \times 5! = \dfrac{{7.6.5}}{{3.2.1}} \times \dfrac{{4.3}}{{2.1}} \times \left( {120} \right)$
$ \Rightarrow {}^7{C_3} \times {}^4{C_2} \times 5! = 35 \times 6 \times \left( {120} \right) = 25200$
So this is the required answer.
So, the correct answer is “Option C”.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the formula of the combination as well as of the factorial which is given as ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}},n! = n\left( {n - 1} \right)\left( {n - 2} \right)......$, so simplify according to these formulas as above we will get the required answer.
Complete step by step answer:
Given data:
There are 7 consonants and 4 vowels.
Now we have made a five letter word with or without meaning each consisting 3 consonants and 2 vowels.
Now as we know that the number of ways to select r objects out of n is ${}^n{C_r}$
So the number of ways to select 3 consonants out of 7 is = ${}^7{C_3}$
And the number of ways to select 2 vowels out of 4 vowels is = ${}^4{C_2}$
So 5 letters are chosen now we have to arrange them.
As we all know that the number of ways to arrange n different objects are n!.
So the number of ways to arrange 5 different letters are 5!
So the total number of 5 letter words consisting of 3 consonants and 2 vowels are the multiplication of the above values so we have,
So the total number of 5 letter words consisting of 3 consonants and 2 vowels are = ${}^7{C_3} \times {}^4{C_2} \times 5!$
Now as we know that, ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}},n! = n\left( {n - 1} \right)\left( {n - 2} \right)......$ so using this property we have,
$ \Rightarrow {}^7{C_3} \times {}^4{C_2} \times 5! = \dfrac{{7!}}{{3!\left( {7 - 3} \right)!}} \times \dfrac{{4!}}{{2!\left( {4 - 2} \right)!}} \times \left( {5.4.3.2.1} \right)$
Now simplify we have,
$ \Rightarrow {}^7{C_3} \times {}^4{C_2} \times 5! = \dfrac{{7!}}{{3!\left( 4 \right)!}} \times \dfrac{{4!}}{{2!\left( 2 \right)!}} \times \left( {120} \right)$
$ \Rightarrow {}^7{C_3} \times {}^4{C_2} \times 5! = \dfrac{{7.6.5.4!}}{{3!\left( 4 \right)!}} \times \dfrac{{4.3.2!}}{{2!\left( 2 \right)!}} \times \left( {120} \right)$
$ \Rightarrow {}^7{C_3} \times {}^4{C_2} \times 5! = \dfrac{{7.6.5}}{{3.2.1}} \times \dfrac{{4.3}}{{2.1}} \times \left( {120} \right)$
$ \Rightarrow {}^7{C_3} \times {}^4{C_2} \times 5! = 35 \times 6 \times \left( {120} \right) = 25200$
So this is the required answer.
So, the correct answer is “Option C”.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the formula of the combination as well as of the factorial which is given as ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}},n! = n\left( {n - 1} \right)\left( {n - 2} \right)......$, so simplify according to these formulas as above we will get the required answer.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
State the laws of reflection of light