
Out of ${\text{7}}$ consonants and ${\text{4}}$ vowels, how many words can be made each contain ${\text{3}}$ consonant and ${\text{2 }}$vowel?
Answer
569.7k+ views
Hint: - Number of ways of selecting ($ r$ numbers out of $n $ numbers) ${\text{ = }}{}^n{C_r}$
Number of ways of selecting (${\text{ 3}}$ consonants out of ${\text{ 7}}$)${\text{ = }}{}^7{C_3}$
And the number of ways of choosing (${\text{ 2}}$ vowels out of ${\text{ 4}}$)${\text{ = }}{}^4{C_2}$
And since each of the first groups can be associated with each of the second,
The number of combined groups, each containing ${\text{ 3}}$ consonants and${\text{ 2}}$ vowels, is
$
\Rightarrow {}^7{C_3} \times {}^4{C_2} = \dfrac{{7!}}{{3!\left( {7 - 3} \right)!}} \times \dfrac{{4!}}{{2!\left( {4 - 2} \right)!}} \\
{\text{ = }}\dfrac{{7 \times 6 \times 5}}{{3 \times 2 \times 1}} \times \dfrac{{4 \times 3}}{{2 \times 1}} \\
{\text{ = 210}} \\
$
Number of groups, each having ${\text{ 3}}$ consonants and ${\text{ 2}}$ vowels ${\text{ = 210}}$
Each group contains $ 5$ letters
Number of ways of arranging $ 5$ letters among themselves ${\text{ = 5!}}$
$
{\text{ = }}5 \times 4 \times 3 \times 2 \times 1 \\
= 120 \\
$
$\therefore \;$ Required number of ways$ = (210 \times 120) = 25200$.
Hence, the answer is $25200$.
Note: - Whenever we face such types of questions,we have to first use the method of selection for selecting the numbers of vowels and constants that are given in question, and then by applying the method of rearranging to rearrange the words to get the total number of words.
Number of ways of selecting (${\text{ 3}}$ consonants out of ${\text{ 7}}$)${\text{ = }}{}^7{C_3}$
And the number of ways of choosing (${\text{ 2}}$ vowels out of ${\text{ 4}}$)${\text{ = }}{}^4{C_2}$
And since each of the first groups can be associated with each of the second,
The number of combined groups, each containing ${\text{ 3}}$ consonants and${\text{ 2}}$ vowels, is
$
\Rightarrow {}^7{C_3} \times {}^4{C_2} = \dfrac{{7!}}{{3!\left( {7 - 3} \right)!}} \times \dfrac{{4!}}{{2!\left( {4 - 2} \right)!}} \\
{\text{ = }}\dfrac{{7 \times 6 \times 5}}{{3 \times 2 \times 1}} \times \dfrac{{4 \times 3}}{{2 \times 1}} \\
{\text{ = 210}} \\
$
Number of groups, each having ${\text{ 3}}$ consonants and ${\text{ 2}}$ vowels ${\text{ = 210}}$
Each group contains $ 5$ letters
Number of ways of arranging $ 5$ letters among themselves ${\text{ = 5!}}$
$
{\text{ = }}5 \times 4 \times 3 \times 2 \times 1 \\
= 120 \\
$
$\therefore \;$ Required number of ways$ = (210 \times 120) = 25200$.
Hence, the answer is $25200$.
Note: - Whenever we face such types of questions,we have to first use the method of selection for selecting the numbers of vowels and constants that are given in question, and then by applying the method of rearranging to rearrange the words to get the total number of words.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

