Answer
Verified
447.3k+ views
Hint: - Number of ways of selecting ($ r$ numbers out of $n $ numbers) ${\text{ = }}{}^n{C_r}$
Number of ways of selecting (${\text{ 3}}$ consonants out of ${\text{ 7}}$)${\text{ = }}{}^7{C_3}$
And the number of ways of choosing (${\text{ 2}}$ vowels out of ${\text{ 4}}$)${\text{ = }}{}^4{C_2}$
And since each of the first groups can be associated with each of the second,
The number of combined groups, each containing ${\text{ 3}}$ consonants and${\text{ 2}}$ vowels, is
$
\Rightarrow {}^7{C_3} \times {}^4{C_2} = \dfrac{{7!}}{{3!\left( {7 - 3} \right)!}} \times \dfrac{{4!}}{{2!\left( {4 - 2} \right)!}} \\
{\text{ = }}\dfrac{{7 \times 6 \times 5}}{{3 \times 2 \times 1}} \times \dfrac{{4 \times 3}}{{2 \times 1}} \\
{\text{ = 210}} \\
$
Number of groups, each having ${\text{ 3}}$ consonants and ${\text{ 2}}$ vowels ${\text{ = 210}}$
Each group contains $ 5$ letters
Number of ways of arranging $ 5$ letters among themselves ${\text{ = 5!}}$
$
{\text{ = }}5 \times 4 \times 3 \times 2 \times 1 \\
= 120 \\
$
$\therefore \;$ Required number of ways$ = (210 \times 120) = 25200$.
Hence, the answer is $25200$.
Note: - Whenever we face such types of questions,we have to first use the method of selection for selecting the numbers of vowels and constants that are given in question, and then by applying the method of rearranging to rearrange the words to get the total number of words.
Number of ways of selecting (${\text{ 3}}$ consonants out of ${\text{ 7}}$)${\text{ = }}{}^7{C_3}$
And the number of ways of choosing (${\text{ 2}}$ vowels out of ${\text{ 4}}$)${\text{ = }}{}^4{C_2}$
And since each of the first groups can be associated with each of the second,
The number of combined groups, each containing ${\text{ 3}}$ consonants and${\text{ 2}}$ vowels, is
$
\Rightarrow {}^7{C_3} \times {}^4{C_2} = \dfrac{{7!}}{{3!\left( {7 - 3} \right)!}} \times \dfrac{{4!}}{{2!\left( {4 - 2} \right)!}} \\
{\text{ = }}\dfrac{{7 \times 6 \times 5}}{{3 \times 2 \times 1}} \times \dfrac{{4 \times 3}}{{2 \times 1}} \\
{\text{ = 210}} \\
$
Number of groups, each having ${\text{ 3}}$ consonants and ${\text{ 2}}$ vowels ${\text{ = 210}}$
Each group contains $ 5$ letters
Number of ways of arranging $ 5$ letters among themselves ${\text{ = 5!}}$
$
{\text{ = }}5 \times 4 \times 3 \times 2 \times 1 \\
= 120 \\
$
$\therefore \;$ Required number of ways$ = (210 \times 120) = 25200$.
Hence, the answer is $25200$.
Note: - Whenever we face such types of questions,we have to first use the method of selection for selecting the numbers of vowels and constants that are given in question, and then by applying the method of rearranging to rearrange the words to get the total number of words.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE