
What is an order with respect to A, B, C respectively?
$\text{ }\left[ \text{A} \right]\text{ }$ $\text{ }\left[ \text{C} \right]\text{ }$ $\text{ }\left[ \text{B} \right]\text{ }$ Rate (M /sec) $\text{ 0}\text{.2 }$ $\text{ 0}\text{.1 }$ $\text{ 0}\text{.02 }$ $\text{ 0}\text{.0 }\times \text{1}{{\text{0}}^{-3}}\text{ }$ $\text{ 0}\text{.1 }$ $\text{ 0}\text{.2 }$ $\text{ 0}\text{.02 }$ $\text{ 2}\text{.01 }\times \text{1}{{\text{0}}^{-3}}\text{ }$ $\text{ 0}\text{.1 }$ $\text{ 1}\text{.8 }$ $\text{ 0}\text{.18 }$ $\text{ 6}\text{.03 }\times \text{1}{{\text{0}}^{-3}}\text{ }$ $\text{ 0}\text{.2 }$ $\text{ 0}\text{.1 }$ $\text{ 0}\text{.08 }$ $\text{ 6}\text{.464 }\times \text{1}{{\text{0}}^{-3}}\text{ }$
A) $\text{ }-1\text{ , 1 , }\dfrac{3}{2}\text{ }$
B) $\text{ }-1\text{ , 1 , }\dfrac{1}{2}\text{ }$
C) $\text{ }1\text{ , }\dfrac{3}{2}\text{ },-\text{1 }$
D) $\text{ }1\text{ , }-\text{1 , }\dfrac{3}{2}\text{ }$
$\text{ }\left[ \text{A} \right]\text{ }$ | $\text{ }\left[ \text{C} \right]\text{ }$ | $\text{ }\left[ \text{B} \right]\text{ }$ | Rate (M /sec) |
$\text{ 0}\text{.2 }$ | $\text{ 0}\text{.1 }$ | $\text{ 0}\text{.02 }$ | $\text{ 0}\text{.0 }\times \text{1}{{\text{0}}^{-3}}\text{ }$ |
$\text{ 0}\text{.1 }$ | $\text{ 0}\text{.2 }$ | $\text{ 0}\text{.02 }$ | $\text{ 2}\text{.01 }\times \text{1}{{\text{0}}^{-3}}\text{ }$ |
$\text{ 0}\text{.1 }$ | $\text{ 1}\text{.8 }$ | $\text{ 0}\text{.18 }$ | $\text{ 6}\text{.03 }\times \text{1}{{\text{0}}^{-3}}\text{ }$ |
$\text{ 0}\text{.2 }$ | $\text{ 0}\text{.1 }$ | $\text{ 0}\text{.08 }$ | $\text{ 6}\text{.464 }\times \text{1}{{\text{0}}^{-3}}\text{ }$ |
Answer
465k+ views
Hint: differential rate expression is a method used to determine the order of reaction with respect to reactant the rate of an nth-order reaction is given by\[\text{ R = }{{\text{k}}_{\text{n}}}{{\text{C}}^{\text{n}}}\text{ }\].where R is the rate of reaction, k is rate constant and C is concentration of reactant. If a reaction involves three reactants let A, B, and C the rate of reaction R is written as,
$\text{ R = k }{{\text{A}}^{\text{x }}}{{\text{B}}^{\text{y}}}\text{ }{{\text{C}}^{\text{z}}}\text{ }$
Where x, y, and z are the order of reaction concerning A, B, and C .here we will apply the differential rate law equation to get the relation between the order. This variable can be obtained by keeping one variable constant.
Complete Solution :
According to the differential rate expression the rate of an nth-order reaction is given by\[\text{ R = }{{\text{k}}_{\text{n}}}{{\text{C}}^{\text{n}}}\text{ }\].where R is the rate of reaction, k is rate constant and C is the concentration of reactant. For a reaction involving three reactants let A, B, and C the rate of reaction R is written as,
$\text{ R = k }{{\text{A}}^{\text{x }}}{{\text{B}}^{\text{y}}}\text{ }{{\text{C}}^{\text{z}}}\text{ }$ (a)
Where x, y, and z are order of reaction with respect to A, B, and C.
We will solve this question using four equations.
Rate reaction for experiment 1 using equation (a) can be written as,
$\text{ 0}\text{.0}\times \text{1}{{\text{0}}^{-3}}\text{ = k }{{\left[ 0.2 \right]}^{\text{x }}}{{\left[ 0.1 \right]}^{\text{y}}}{{\left[ 0.02 \right]}^{\text{z}}}\text{ }$ (1)
Rate reaction for experiment 2 using equation (a) can be written as,
$\text{ 2}\text{.01}\times \text{1}{{\text{0}}^{-3}}\text{ = k }{{\left[ 0.1 \right]}^{\text{x }}}{{\left[ 0.2 \right]}^{\text{y}}}{{\left[ 0.02 \right]}^{\text{z}}}\text{ }$ (2)
Rate reaction for experiment 3 using equation (a) can be written as,
$\text{ 6}\text{.03}\times \text{1}{{\text{0}}^{-3}}\text{ = k }{{\left[ 0.1 \right]}^{\text{x }}}{{\left[ 1.8 \right]}^{\text{y}}}{{\left[ 0.18 \right]}^{\text{z}}}\text{ }$ (4)
Rate reaction for experiment 4 using equation (a) can be written as,
$\text{ 6}\text{.464}\times \text{1}{{\text{0}}^{-3}}\text{ = k }{{\left[ 0.2 \right]}^{\text{x }}}{{\left[ 0.1 \right]}^{\text{y}}}{{\left[ 0.08 \right]}^{\text{z}}}\text{ }$ (3)
Part A) Determine relation between variables A, B and C:
We are interested to determine the values of x, y and z .to determine the values lets first divide the equation (1) by the equation (2) .we have,
$\text{ }\dfrac{\text{2}\text{.01}\times \text{1}{{\text{0}}^{-3}}\text{ }}{\text{0}\text{.0}\times \text{1}{{\text{0}}^{-3}}}=\dfrac{\text{k }{{\left[ 0.1 \right]}^{\text{x }}}{{\left[ 0.2 \right]}^{\text{y}}}{{\left[ 0.02 \right]}^{\text{z}}}\text{ }}{\text{k }{{\left[ 0.2 \right]}^{\text{x }}}{{\left[ 0.1 \right]}^{\text{y}}}{{\left[ 0.02 \right]}^{\text{z}}}\text{ }}\text{ }$
Simply the above equation cancels out common terms from the numerator and denominator. Simplified equation is as shown below,
$\text{ }{{\text{2}}^{\text{2}}}\text{ =}\dfrac{\text{ }{{\left[ \text{0}\text{.1} \right]}^{\text{x}}}{{\left[ \text{0}\text{.2} \right]}^{\text{y}}}\text{ }}{\text{ }{{\left[ \text{0}\text{.2} \right]}^{\text{x}}}{{\left[ \text{0}\text{.1} \right]}^{\text{y}}}\text{ }}\text{ = }{{\left( \dfrac{1}{2} \right)}^{\text{x}}}{{\left( 2 \right)}^{\text{y}}}\text{ }$
Now simply the above relation as follows .we have,
$2\text{ = x}-\text{y }$ (5)
Let’s first divide the equation (1) by the equation (3) we have,
$\text{ }\dfrac{\text{2}\text{.01}\times \text{1}{{\text{0}}^{-3}}\text{ }}{\text{6}\text{.03}\times \text{1}{{\text{0}}^{-3}}}=\dfrac{\text{k }{{\left[ 0.1 \right]}^{\text{x }}}{{\left[ 0.2 \right]}^{\text{y}}}{{\left[ 0.02 \right]}^{\text{z}}}\text{ }}{\text{k }{{\left[ 0.1 \right]}^{\text{x }}}{{\left[ 1.8 \right]}^{\text{y}}}{{\left[ 0.18 \right]}^{\text{z}}}\text{ }}\text{ }$
Simply the above equation cancels out common terms from the numerator and denominator. Simplified equation is as shown below,
$\text{ }\dfrac{\text{ 1 }}{\text{3}}\text{=}\dfrac{\text{ }{{\left[ \text{0}\text{.2} \right]}^{\text{y}}}{{\left[ \text{0}\text{.02} \right]}^{\text{z}}}\text{ }}{\text{ }{{\left[ \text{1}\text{.8} \right]}^{\text{y}}}{{\left[ \text{0}\text{.18} \right]}^{\text{z}}}\text{ }}\text{ = }{{\left( \dfrac{\text{0}\text{.2}}{\text{1}\text{.8}} \right)}^{\text{y}}}{{\left( \dfrac{\text{0}\text{.02}}{\text{0}\text{.18}} \right)}^{\text{z}}}\text{ }$
Now simply the above relation as follows .we have,
$\dfrac{1}{3}\text{=}{{\left( \dfrac{1}{9} \right)}^{\text{y}}}{{\left( \dfrac{1}{9} \right)}^{\text{z}}}\text{ }$
On taking reciprocal of the above equation. we have,
\[\begin{align}
& \text{ }{{\text{3}}^{-1}}\text{ = }{{\text{9}}^{-\left( \text{y+z} \right)}}\text{ } \\
& \Rightarrow {{\text{3}}^{-1}}\text{ = }{{\text{3}}^{-2\left( \text{y+z} \right)}}\text{ } \\
\end{align}\]
Using law of exponents, we have
$\text{ }-1\text{ = }-\text{2y }-\text{2z }\Rightarrow \text{ 2y + 2z = 1 }$ (6)
Now to determine the values let's divide the equation (1) by the equation (4) .we have,
\[\text{ }\dfrac{\text{6}\text{.464}\times \text{1}{{\text{0}}^{-3}}\text{ }}{0.0\times \text{1}{{\text{0}}^{-3}}}=\dfrac{\text{k }{{\left[ 0.2 \right]}^{\text{x }}}{{\left[ 0.1 \right]}^{\text{y}}}{{\left[ 0.08 \right]}^{\text{z}}}\text{ }}{\text{k }{{\left[ 0.2 \right]}^{\text{x }}}{{\left[ 0.1 \right]}^{\text{y}}}{{\left[ 0.02 \right]}^{\text{z}}}\text{ }}\text{ }\]
Simply the above equation cancels out common terms from the numerator and denominator. Simplified equation is as shown below,
${{\text{2}}^{\text{3}}}=\dfrac{\text{ }{{\left[ \text{0}\text{.2} \right]}^{\text{x}}}{{\left[ \text{0}\text{.1} \right]}^{\text{y}}}{{\left[ \text{0}\text{.02} \right]}^{\text{z}}}\text{ }}{\text{ }{{\left[ \text{0}\text{.2} \right]}^{\text{x}}}{{\left[ \text{0}\text{.1} \right]}^{\text{y}}}{{\left[ \text{0}\text{.08} \right]}^{\text{z}}}\text{ }}\text{ = }{{\left( \dfrac{\text{0}\text{.08}}{\text{0}\text{.02}} \right)}^{\text{z}}}\text{ }$
Now simply the above relation as follows .we have,
\[{{\text{2}}^{\text{3}}}\text{=}{{\left( {{2}^{2}} \right)}^{\text{z}}}\text{ }\]
$\text{ 3 = 2z }\Rightarrow \text{ z = }\dfrac{3}{2}\text{ }$
Let's substitute the value of z in equation (6) we have,
$\begin{align}
& \text{ 2y + 2z = 1 } \\
& \Rightarrow 2y\text{ + 2 }\left( \dfrac{3}{2} \right)\text{ = 1 } \\
& \Rightarrow y\text{ = }\dfrac{-2}{2}\text{ = }-1\text{ } \\
\end{align}$
Part B) Determine order of reaction with respect to reactant:
Let's substitute the value of y in equation (5) we get the value of x as,
$\begin{align}
& \text{ }2\text{ = x}-\left( -1 \right) \\
& \Rightarrow \text{x = 1 } \\
\end{align}$
Thus the order of reactant with respect to A, B, and C is 1, $-1$ and $\left( \dfrac{3}{2} \right)$ respectively.
So, the correct answer is “Option D”.
Note: Remember that to simply the above relation we are using the law of exponents. According to which if bases are equal then exponents are also equal i.e. $\text{ }{{\text{A}}^{\text{x}}}\text{ = }{{\text{A}}^{\text{y}}}\text{ }\Rightarrow \text{ x = y }$ .Figure out a base then equate the exponents to get the order or reaction with respect to reactant.
$\text{ R = k }{{\text{A}}^{\text{x }}}{{\text{B}}^{\text{y}}}\text{ }{{\text{C}}^{\text{z}}}\text{ }$
Where x, y, and z are the order of reaction concerning A, B, and C .here we will apply the differential rate law equation to get the relation between the order. This variable can be obtained by keeping one variable constant.
Complete Solution :
According to the differential rate expression the rate of an nth-order reaction is given by\[\text{ R = }{{\text{k}}_{\text{n}}}{{\text{C}}^{\text{n}}}\text{ }\].where R is the rate of reaction, k is rate constant and C is the concentration of reactant. For a reaction involving three reactants let A, B, and C the rate of reaction R is written as,
$\text{ R = k }{{\text{A}}^{\text{x }}}{{\text{B}}^{\text{y}}}\text{ }{{\text{C}}^{\text{z}}}\text{ }$ (a)
Where x, y, and z are order of reaction with respect to A, B, and C.
We will solve this question using four equations.
Rate reaction for experiment 1 using equation (a) can be written as,
$\text{ 0}\text{.0}\times \text{1}{{\text{0}}^{-3}}\text{ = k }{{\left[ 0.2 \right]}^{\text{x }}}{{\left[ 0.1 \right]}^{\text{y}}}{{\left[ 0.02 \right]}^{\text{z}}}\text{ }$ (1)
Rate reaction for experiment 2 using equation (a) can be written as,
$\text{ 2}\text{.01}\times \text{1}{{\text{0}}^{-3}}\text{ = k }{{\left[ 0.1 \right]}^{\text{x }}}{{\left[ 0.2 \right]}^{\text{y}}}{{\left[ 0.02 \right]}^{\text{z}}}\text{ }$ (2)
Rate reaction for experiment 3 using equation (a) can be written as,
$\text{ 6}\text{.03}\times \text{1}{{\text{0}}^{-3}}\text{ = k }{{\left[ 0.1 \right]}^{\text{x }}}{{\left[ 1.8 \right]}^{\text{y}}}{{\left[ 0.18 \right]}^{\text{z}}}\text{ }$ (4)
Rate reaction for experiment 4 using equation (a) can be written as,
$\text{ 6}\text{.464}\times \text{1}{{\text{0}}^{-3}}\text{ = k }{{\left[ 0.2 \right]}^{\text{x }}}{{\left[ 0.1 \right]}^{\text{y}}}{{\left[ 0.08 \right]}^{\text{z}}}\text{ }$ (3)
Part A) Determine relation between variables A, B and C:
We are interested to determine the values of x, y and z .to determine the values lets first divide the equation (1) by the equation (2) .we have,
$\text{ }\dfrac{\text{2}\text{.01}\times \text{1}{{\text{0}}^{-3}}\text{ }}{\text{0}\text{.0}\times \text{1}{{\text{0}}^{-3}}}=\dfrac{\text{k }{{\left[ 0.1 \right]}^{\text{x }}}{{\left[ 0.2 \right]}^{\text{y}}}{{\left[ 0.02 \right]}^{\text{z}}}\text{ }}{\text{k }{{\left[ 0.2 \right]}^{\text{x }}}{{\left[ 0.1 \right]}^{\text{y}}}{{\left[ 0.02 \right]}^{\text{z}}}\text{ }}\text{ }$
Simply the above equation cancels out common terms from the numerator and denominator. Simplified equation is as shown below,
$\text{ }{{\text{2}}^{\text{2}}}\text{ =}\dfrac{\text{ }{{\left[ \text{0}\text{.1} \right]}^{\text{x}}}{{\left[ \text{0}\text{.2} \right]}^{\text{y}}}\text{ }}{\text{ }{{\left[ \text{0}\text{.2} \right]}^{\text{x}}}{{\left[ \text{0}\text{.1} \right]}^{\text{y}}}\text{ }}\text{ = }{{\left( \dfrac{1}{2} \right)}^{\text{x}}}{{\left( 2 \right)}^{\text{y}}}\text{ }$
Now simply the above relation as follows .we have,
$2\text{ = x}-\text{y }$ (5)
Let’s first divide the equation (1) by the equation (3) we have,
$\text{ }\dfrac{\text{2}\text{.01}\times \text{1}{{\text{0}}^{-3}}\text{ }}{\text{6}\text{.03}\times \text{1}{{\text{0}}^{-3}}}=\dfrac{\text{k }{{\left[ 0.1 \right]}^{\text{x }}}{{\left[ 0.2 \right]}^{\text{y}}}{{\left[ 0.02 \right]}^{\text{z}}}\text{ }}{\text{k }{{\left[ 0.1 \right]}^{\text{x }}}{{\left[ 1.8 \right]}^{\text{y}}}{{\left[ 0.18 \right]}^{\text{z}}}\text{ }}\text{ }$
Simply the above equation cancels out common terms from the numerator and denominator. Simplified equation is as shown below,
$\text{ }\dfrac{\text{ 1 }}{\text{3}}\text{=}\dfrac{\text{ }{{\left[ \text{0}\text{.2} \right]}^{\text{y}}}{{\left[ \text{0}\text{.02} \right]}^{\text{z}}}\text{ }}{\text{ }{{\left[ \text{1}\text{.8} \right]}^{\text{y}}}{{\left[ \text{0}\text{.18} \right]}^{\text{z}}}\text{ }}\text{ = }{{\left( \dfrac{\text{0}\text{.2}}{\text{1}\text{.8}} \right)}^{\text{y}}}{{\left( \dfrac{\text{0}\text{.02}}{\text{0}\text{.18}} \right)}^{\text{z}}}\text{ }$
Now simply the above relation as follows .we have,
$\dfrac{1}{3}\text{=}{{\left( \dfrac{1}{9} \right)}^{\text{y}}}{{\left( \dfrac{1}{9} \right)}^{\text{z}}}\text{ }$
On taking reciprocal of the above equation. we have,
\[\begin{align}
& \text{ }{{\text{3}}^{-1}}\text{ = }{{\text{9}}^{-\left( \text{y+z} \right)}}\text{ } \\
& \Rightarrow {{\text{3}}^{-1}}\text{ = }{{\text{3}}^{-2\left( \text{y+z} \right)}}\text{ } \\
\end{align}\]
Using law of exponents, we have
$\text{ }-1\text{ = }-\text{2y }-\text{2z }\Rightarrow \text{ 2y + 2z = 1 }$ (6)
Now to determine the values let's divide the equation (1) by the equation (4) .we have,
\[\text{ }\dfrac{\text{6}\text{.464}\times \text{1}{{\text{0}}^{-3}}\text{ }}{0.0\times \text{1}{{\text{0}}^{-3}}}=\dfrac{\text{k }{{\left[ 0.2 \right]}^{\text{x }}}{{\left[ 0.1 \right]}^{\text{y}}}{{\left[ 0.08 \right]}^{\text{z}}}\text{ }}{\text{k }{{\left[ 0.2 \right]}^{\text{x }}}{{\left[ 0.1 \right]}^{\text{y}}}{{\left[ 0.02 \right]}^{\text{z}}}\text{ }}\text{ }\]
Simply the above equation cancels out common terms from the numerator and denominator. Simplified equation is as shown below,
${{\text{2}}^{\text{3}}}=\dfrac{\text{ }{{\left[ \text{0}\text{.2} \right]}^{\text{x}}}{{\left[ \text{0}\text{.1} \right]}^{\text{y}}}{{\left[ \text{0}\text{.02} \right]}^{\text{z}}}\text{ }}{\text{ }{{\left[ \text{0}\text{.2} \right]}^{\text{x}}}{{\left[ \text{0}\text{.1} \right]}^{\text{y}}}{{\left[ \text{0}\text{.08} \right]}^{\text{z}}}\text{ }}\text{ = }{{\left( \dfrac{\text{0}\text{.08}}{\text{0}\text{.02}} \right)}^{\text{z}}}\text{ }$
Now simply the above relation as follows .we have,
\[{{\text{2}}^{\text{3}}}\text{=}{{\left( {{2}^{2}} \right)}^{\text{z}}}\text{ }\]
$\text{ 3 = 2z }\Rightarrow \text{ z = }\dfrac{3}{2}\text{ }$
Let's substitute the value of z in equation (6) we have,
$\begin{align}
& \text{ 2y + 2z = 1 } \\
& \Rightarrow 2y\text{ + 2 }\left( \dfrac{3}{2} \right)\text{ = 1 } \\
& \Rightarrow y\text{ = }\dfrac{-2}{2}\text{ = }-1\text{ } \\
\end{align}$
Part B) Determine order of reaction with respect to reactant:
Let's substitute the value of y in equation (5) we get the value of x as,
$\begin{align}
& \text{ }2\text{ = x}-\left( -1 \right) \\
& \Rightarrow \text{x = 1 } \\
\end{align}$
Thus the order of reactant with respect to A, B, and C is 1, $-1$ and $\left( \dfrac{3}{2} \right)$ respectively.
So, the correct answer is “Option D”.
Note: Remember that to simply the above relation we are using the law of exponents. According to which if bases are equal then exponents are also equal i.e. $\text{ }{{\text{A}}^{\text{x}}}\text{ = }{{\text{A}}^{\text{y}}}\text{ }\Rightarrow \text{ x = y }$ .Figure out a base then equate the exponents to get the order or reaction with respect to reactant.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
