Answer
Verified
427.5k+ views
Hint: differential rate expression is a method used to determine the order of reaction with respect to reactant the rate of an nth-order reaction is given by\[\text{ R = }{{\text{k}}_{\text{n}}}{{\text{C}}^{\text{n}}}\text{ }\].where R is the rate of reaction, k is rate constant and C is concentration of reactant. If a reaction involves three reactants let A, B, and C the rate of reaction R is written as,
$\text{ R = k }{{\text{A}}^{\text{x }}}{{\text{B}}^{\text{y}}}\text{ }{{\text{C}}^{\text{z}}}\text{ }$
Where x, y, and z are the order of reaction concerning A, B, and C .here we will apply the differential rate law equation to get the relation between the order. This variable can be obtained by keeping one variable constant.
Complete Solution :
According to the differential rate expression the rate of an nth-order reaction is given by\[\text{ R = }{{\text{k}}_{\text{n}}}{{\text{C}}^{\text{n}}}\text{ }\].where R is the rate of reaction, k is rate constant and C is the concentration of reactant. For a reaction involving three reactants let A, B, and C the rate of reaction R is written as,
$\text{ R = k }{{\text{A}}^{\text{x }}}{{\text{B}}^{\text{y}}}\text{ }{{\text{C}}^{\text{z}}}\text{ }$ (a)
Where x, y, and z are order of reaction with respect to A, B, and C.
We will solve this question using four equations.
Rate reaction for experiment 1 using equation (a) can be written as,
$\text{ 0}\text{.0}\times \text{1}{{\text{0}}^{-3}}\text{ = k }{{\left[ 0.2 \right]}^{\text{x }}}{{\left[ 0.1 \right]}^{\text{y}}}{{\left[ 0.02 \right]}^{\text{z}}}\text{ }$ (1)
Rate reaction for experiment 2 using equation (a) can be written as,
$\text{ 2}\text{.01}\times \text{1}{{\text{0}}^{-3}}\text{ = k }{{\left[ 0.1 \right]}^{\text{x }}}{{\left[ 0.2 \right]}^{\text{y}}}{{\left[ 0.02 \right]}^{\text{z}}}\text{ }$ (2)
Rate reaction for experiment 3 using equation (a) can be written as,
$\text{ 6}\text{.03}\times \text{1}{{\text{0}}^{-3}}\text{ = k }{{\left[ 0.1 \right]}^{\text{x }}}{{\left[ 1.8 \right]}^{\text{y}}}{{\left[ 0.18 \right]}^{\text{z}}}\text{ }$ (4)
Rate reaction for experiment 4 using equation (a) can be written as,
$\text{ 6}\text{.464}\times \text{1}{{\text{0}}^{-3}}\text{ = k }{{\left[ 0.2 \right]}^{\text{x }}}{{\left[ 0.1 \right]}^{\text{y}}}{{\left[ 0.08 \right]}^{\text{z}}}\text{ }$ (3)
Part A) Determine relation between variables A, B and C:
We are interested to determine the values of x, y and z .to determine the values lets first divide the equation (1) by the equation (2) .we have,
$\text{ }\dfrac{\text{2}\text{.01}\times \text{1}{{\text{0}}^{-3}}\text{ }}{\text{0}\text{.0}\times \text{1}{{\text{0}}^{-3}}}=\dfrac{\text{k }{{\left[ 0.1 \right]}^{\text{x }}}{{\left[ 0.2 \right]}^{\text{y}}}{{\left[ 0.02 \right]}^{\text{z}}}\text{ }}{\text{k }{{\left[ 0.2 \right]}^{\text{x }}}{{\left[ 0.1 \right]}^{\text{y}}}{{\left[ 0.02 \right]}^{\text{z}}}\text{ }}\text{ }$
Simply the above equation cancels out common terms from the numerator and denominator. Simplified equation is as shown below,
$\text{ }{{\text{2}}^{\text{2}}}\text{ =}\dfrac{\text{ }{{\left[ \text{0}\text{.1} \right]}^{\text{x}}}{{\left[ \text{0}\text{.2} \right]}^{\text{y}}}\text{ }}{\text{ }{{\left[ \text{0}\text{.2} \right]}^{\text{x}}}{{\left[ \text{0}\text{.1} \right]}^{\text{y}}}\text{ }}\text{ = }{{\left( \dfrac{1}{2} \right)}^{\text{x}}}{{\left( 2 \right)}^{\text{y}}}\text{ }$
Now simply the above relation as follows .we have,
$2\text{ = x}-\text{y }$ (5)
Let’s first divide the equation (1) by the equation (3) we have,
$\text{ }\dfrac{\text{2}\text{.01}\times \text{1}{{\text{0}}^{-3}}\text{ }}{\text{6}\text{.03}\times \text{1}{{\text{0}}^{-3}}}=\dfrac{\text{k }{{\left[ 0.1 \right]}^{\text{x }}}{{\left[ 0.2 \right]}^{\text{y}}}{{\left[ 0.02 \right]}^{\text{z}}}\text{ }}{\text{k }{{\left[ 0.1 \right]}^{\text{x }}}{{\left[ 1.8 \right]}^{\text{y}}}{{\left[ 0.18 \right]}^{\text{z}}}\text{ }}\text{ }$
Simply the above equation cancels out common terms from the numerator and denominator. Simplified equation is as shown below,
$\text{ }\dfrac{\text{ 1 }}{\text{3}}\text{=}\dfrac{\text{ }{{\left[ \text{0}\text{.2} \right]}^{\text{y}}}{{\left[ \text{0}\text{.02} \right]}^{\text{z}}}\text{ }}{\text{ }{{\left[ \text{1}\text{.8} \right]}^{\text{y}}}{{\left[ \text{0}\text{.18} \right]}^{\text{z}}}\text{ }}\text{ = }{{\left( \dfrac{\text{0}\text{.2}}{\text{1}\text{.8}} \right)}^{\text{y}}}{{\left( \dfrac{\text{0}\text{.02}}{\text{0}\text{.18}} \right)}^{\text{z}}}\text{ }$
Now simply the above relation as follows .we have,
$\dfrac{1}{3}\text{=}{{\left( \dfrac{1}{9} \right)}^{\text{y}}}{{\left( \dfrac{1}{9} \right)}^{\text{z}}}\text{ }$
On taking reciprocal of the above equation. we have,
\[\begin{align}
& \text{ }{{\text{3}}^{-1}}\text{ = }{{\text{9}}^{-\left( \text{y+z} \right)}}\text{ } \\
& \Rightarrow {{\text{3}}^{-1}}\text{ = }{{\text{3}}^{-2\left( \text{y+z} \right)}}\text{ } \\
\end{align}\]
Using law of exponents, we have
$\text{ }-1\text{ = }-\text{2y }-\text{2z }\Rightarrow \text{ 2y + 2z = 1 }$ (6)
Now to determine the values let's divide the equation (1) by the equation (4) .we have,
\[\text{ }\dfrac{\text{6}\text{.464}\times \text{1}{{\text{0}}^{-3}}\text{ }}{0.0\times \text{1}{{\text{0}}^{-3}}}=\dfrac{\text{k }{{\left[ 0.2 \right]}^{\text{x }}}{{\left[ 0.1 \right]}^{\text{y}}}{{\left[ 0.08 \right]}^{\text{z}}}\text{ }}{\text{k }{{\left[ 0.2 \right]}^{\text{x }}}{{\left[ 0.1 \right]}^{\text{y}}}{{\left[ 0.02 \right]}^{\text{z}}}\text{ }}\text{ }\]
Simply the above equation cancels out common terms from the numerator and denominator. Simplified equation is as shown below,
${{\text{2}}^{\text{3}}}=\dfrac{\text{ }{{\left[ \text{0}\text{.2} \right]}^{\text{x}}}{{\left[ \text{0}\text{.1} \right]}^{\text{y}}}{{\left[ \text{0}\text{.02} \right]}^{\text{z}}}\text{ }}{\text{ }{{\left[ \text{0}\text{.2} \right]}^{\text{x}}}{{\left[ \text{0}\text{.1} \right]}^{\text{y}}}{{\left[ \text{0}\text{.08} \right]}^{\text{z}}}\text{ }}\text{ = }{{\left( \dfrac{\text{0}\text{.08}}{\text{0}\text{.02}} \right)}^{\text{z}}}\text{ }$
Now simply the above relation as follows .we have,
\[{{\text{2}}^{\text{3}}}\text{=}{{\left( {{2}^{2}} \right)}^{\text{z}}}\text{ }\]
$\text{ 3 = 2z }\Rightarrow \text{ z = }\dfrac{3}{2}\text{ }$
Let's substitute the value of z in equation (6) we have,
$\begin{align}
& \text{ 2y + 2z = 1 } \\
& \Rightarrow 2y\text{ + 2 }\left( \dfrac{3}{2} \right)\text{ = 1 } \\
& \Rightarrow y\text{ = }\dfrac{-2}{2}\text{ = }-1\text{ } \\
\end{align}$
Part B) Determine order of reaction with respect to reactant:
Let's substitute the value of y in equation (5) we get the value of x as,
$\begin{align}
& \text{ }2\text{ = x}-\left( -1 \right) \\
& \Rightarrow \text{x = 1 } \\
\end{align}$
Thus the order of reactant with respect to A, B, and C is 1, $-1$ and $\left( \dfrac{3}{2} \right)$ respectively.
So, the correct answer is “Option D”.
Note: Remember that to simply the above relation we are using the law of exponents. According to which if bases are equal then exponents are also equal i.e. $\text{ }{{\text{A}}^{\text{x}}}\text{ = }{{\text{A}}^{\text{y}}}\text{ }\Rightarrow \text{ x = y }$ .Figure out a base then equate the exponents to get the order or reaction with respect to reactant.
$\text{ R = k }{{\text{A}}^{\text{x }}}{{\text{B}}^{\text{y}}}\text{ }{{\text{C}}^{\text{z}}}\text{ }$
Where x, y, and z are the order of reaction concerning A, B, and C .here we will apply the differential rate law equation to get the relation between the order. This variable can be obtained by keeping one variable constant.
Complete Solution :
According to the differential rate expression the rate of an nth-order reaction is given by\[\text{ R = }{{\text{k}}_{\text{n}}}{{\text{C}}^{\text{n}}}\text{ }\].where R is the rate of reaction, k is rate constant and C is the concentration of reactant. For a reaction involving three reactants let A, B, and C the rate of reaction R is written as,
$\text{ R = k }{{\text{A}}^{\text{x }}}{{\text{B}}^{\text{y}}}\text{ }{{\text{C}}^{\text{z}}}\text{ }$ (a)
Where x, y, and z are order of reaction with respect to A, B, and C.
We will solve this question using four equations.
Rate reaction for experiment 1 using equation (a) can be written as,
$\text{ 0}\text{.0}\times \text{1}{{\text{0}}^{-3}}\text{ = k }{{\left[ 0.2 \right]}^{\text{x }}}{{\left[ 0.1 \right]}^{\text{y}}}{{\left[ 0.02 \right]}^{\text{z}}}\text{ }$ (1)
Rate reaction for experiment 2 using equation (a) can be written as,
$\text{ 2}\text{.01}\times \text{1}{{\text{0}}^{-3}}\text{ = k }{{\left[ 0.1 \right]}^{\text{x }}}{{\left[ 0.2 \right]}^{\text{y}}}{{\left[ 0.02 \right]}^{\text{z}}}\text{ }$ (2)
Rate reaction for experiment 3 using equation (a) can be written as,
$\text{ 6}\text{.03}\times \text{1}{{\text{0}}^{-3}}\text{ = k }{{\left[ 0.1 \right]}^{\text{x }}}{{\left[ 1.8 \right]}^{\text{y}}}{{\left[ 0.18 \right]}^{\text{z}}}\text{ }$ (4)
Rate reaction for experiment 4 using equation (a) can be written as,
$\text{ 6}\text{.464}\times \text{1}{{\text{0}}^{-3}}\text{ = k }{{\left[ 0.2 \right]}^{\text{x }}}{{\left[ 0.1 \right]}^{\text{y}}}{{\left[ 0.08 \right]}^{\text{z}}}\text{ }$ (3)
Part A) Determine relation between variables A, B and C:
We are interested to determine the values of x, y and z .to determine the values lets first divide the equation (1) by the equation (2) .we have,
$\text{ }\dfrac{\text{2}\text{.01}\times \text{1}{{\text{0}}^{-3}}\text{ }}{\text{0}\text{.0}\times \text{1}{{\text{0}}^{-3}}}=\dfrac{\text{k }{{\left[ 0.1 \right]}^{\text{x }}}{{\left[ 0.2 \right]}^{\text{y}}}{{\left[ 0.02 \right]}^{\text{z}}}\text{ }}{\text{k }{{\left[ 0.2 \right]}^{\text{x }}}{{\left[ 0.1 \right]}^{\text{y}}}{{\left[ 0.02 \right]}^{\text{z}}}\text{ }}\text{ }$
Simply the above equation cancels out common terms from the numerator and denominator. Simplified equation is as shown below,
$\text{ }{{\text{2}}^{\text{2}}}\text{ =}\dfrac{\text{ }{{\left[ \text{0}\text{.1} \right]}^{\text{x}}}{{\left[ \text{0}\text{.2} \right]}^{\text{y}}}\text{ }}{\text{ }{{\left[ \text{0}\text{.2} \right]}^{\text{x}}}{{\left[ \text{0}\text{.1} \right]}^{\text{y}}}\text{ }}\text{ = }{{\left( \dfrac{1}{2} \right)}^{\text{x}}}{{\left( 2 \right)}^{\text{y}}}\text{ }$
Now simply the above relation as follows .we have,
$2\text{ = x}-\text{y }$ (5)
Let’s first divide the equation (1) by the equation (3) we have,
$\text{ }\dfrac{\text{2}\text{.01}\times \text{1}{{\text{0}}^{-3}}\text{ }}{\text{6}\text{.03}\times \text{1}{{\text{0}}^{-3}}}=\dfrac{\text{k }{{\left[ 0.1 \right]}^{\text{x }}}{{\left[ 0.2 \right]}^{\text{y}}}{{\left[ 0.02 \right]}^{\text{z}}}\text{ }}{\text{k }{{\left[ 0.1 \right]}^{\text{x }}}{{\left[ 1.8 \right]}^{\text{y}}}{{\left[ 0.18 \right]}^{\text{z}}}\text{ }}\text{ }$
Simply the above equation cancels out common terms from the numerator and denominator. Simplified equation is as shown below,
$\text{ }\dfrac{\text{ 1 }}{\text{3}}\text{=}\dfrac{\text{ }{{\left[ \text{0}\text{.2} \right]}^{\text{y}}}{{\left[ \text{0}\text{.02} \right]}^{\text{z}}}\text{ }}{\text{ }{{\left[ \text{1}\text{.8} \right]}^{\text{y}}}{{\left[ \text{0}\text{.18} \right]}^{\text{z}}}\text{ }}\text{ = }{{\left( \dfrac{\text{0}\text{.2}}{\text{1}\text{.8}} \right)}^{\text{y}}}{{\left( \dfrac{\text{0}\text{.02}}{\text{0}\text{.18}} \right)}^{\text{z}}}\text{ }$
Now simply the above relation as follows .we have,
$\dfrac{1}{3}\text{=}{{\left( \dfrac{1}{9} \right)}^{\text{y}}}{{\left( \dfrac{1}{9} \right)}^{\text{z}}}\text{ }$
On taking reciprocal of the above equation. we have,
\[\begin{align}
& \text{ }{{\text{3}}^{-1}}\text{ = }{{\text{9}}^{-\left( \text{y+z} \right)}}\text{ } \\
& \Rightarrow {{\text{3}}^{-1}}\text{ = }{{\text{3}}^{-2\left( \text{y+z} \right)}}\text{ } \\
\end{align}\]
Using law of exponents, we have
$\text{ }-1\text{ = }-\text{2y }-\text{2z }\Rightarrow \text{ 2y + 2z = 1 }$ (6)
Now to determine the values let's divide the equation (1) by the equation (4) .we have,
\[\text{ }\dfrac{\text{6}\text{.464}\times \text{1}{{\text{0}}^{-3}}\text{ }}{0.0\times \text{1}{{\text{0}}^{-3}}}=\dfrac{\text{k }{{\left[ 0.2 \right]}^{\text{x }}}{{\left[ 0.1 \right]}^{\text{y}}}{{\left[ 0.08 \right]}^{\text{z}}}\text{ }}{\text{k }{{\left[ 0.2 \right]}^{\text{x }}}{{\left[ 0.1 \right]}^{\text{y}}}{{\left[ 0.02 \right]}^{\text{z}}}\text{ }}\text{ }\]
Simply the above equation cancels out common terms from the numerator and denominator. Simplified equation is as shown below,
${{\text{2}}^{\text{3}}}=\dfrac{\text{ }{{\left[ \text{0}\text{.2} \right]}^{\text{x}}}{{\left[ \text{0}\text{.1} \right]}^{\text{y}}}{{\left[ \text{0}\text{.02} \right]}^{\text{z}}}\text{ }}{\text{ }{{\left[ \text{0}\text{.2} \right]}^{\text{x}}}{{\left[ \text{0}\text{.1} \right]}^{\text{y}}}{{\left[ \text{0}\text{.08} \right]}^{\text{z}}}\text{ }}\text{ = }{{\left( \dfrac{\text{0}\text{.08}}{\text{0}\text{.02}} \right)}^{\text{z}}}\text{ }$
Now simply the above relation as follows .we have,
\[{{\text{2}}^{\text{3}}}\text{=}{{\left( {{2}^{2}} \right)}^{\text{z}}}\text{ }\]
$\text{ 3 = 2z }\Rightarrow \text{ z = }\dfrac{3}{2}\text{ }$
Let's substitute the value of z in equation (6) we have,
$\begin{align}
& \text{ 2y + 2z = 1 } \\
& \Rightarrow 2y\text{ + 2 }\left( \dfrac{3}{2} \right)\text{ = 1 } \\
& \Rightarrow y\text{ = }\dfrac{-2}{2}\text{ = }-1\text{ } \\
\end{align}$
Part B) Determine order of reaction with respect to reactant:
Let's substitute the value of y in equation (5) we get the value of x as,
$\begin{align}
& \text{ }2\text{ = x}-\left( -1 \right) \\
& \Rightarrow \text{x = 1 } \\
\end{align}$
Thus the order of reactant with respect to A, B, and C is 1, $-1$ and $\left( \dfrac{3}{2} \right)$ respectively.
So, the correct answer is “Option D”.
Note: Remember that to simply the above relation we are using the law of exponents. According to which if bases are equal then exponents are also equal i.e. $\text{ }{{\text{A}}^{\text{x}}}\text{ = }{{\text{A}}^{\text{y}}}\text{ }\Rightarrow \text{ x = y }$ .Figure out a base then equate the exponents to get the order or reaction with respect to reactant.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Casparian strips are present in of the root A Epiblema class 12 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE