Answer
Verified
426.3k+ views
Hint: Use the formula for the kinematic equation for final velocity of the object. This equation gives the relation between the final velocity, initial velocity, acceleration and time. Determine the position of the stone two times from the given information. Derive the equation for the vertical component of initial velocity of the stone for time second. Then using the given angle of stone with the horizontal, derive an expression for velocity of stone one second after projection. Hence, determine the angle of projection of the stone.
Formula used:
The first kinematic equation is given by
\[v = u + at\] …… (1)
Here, \[v\] is final velocity of the object, \[u\] is initial velocity of the object, \[a\] is acceleration of the object and \[t\] is the time.
Complete step by step answer:
We have given that the angle of the stone one second after the projection is \[45^\circ \] with the horizontal and two seconds after the projection, the stone moves horizontally.We have asked to determine the angle of projection of the stone.Let us rewrite the equation (1) for the velocity of an object in free fall.
\[{v_y} = {u_y} - gt\] …… (2)
Here, \[{v_y}\] is vertical component of final velocity, \[{u_y}\] is vertical component of initial velocity and \[g\] is acceleration due to gravity.
We have given that two seconds after projection, the stone moves horizontally. Hence, the stone must be at the top most point of the trajectory.At the top most point of projectile motion, the vertical component of velocity of the stone is zero and the vertical component of initial velocity of the stone is \[u\sin \theta \].
\[{v_y} = 0\,{\text{m/s}}\]
\[{u_y} = u\sin \theta \]
Here, \[u\] is the velocity of projection and \[\theta \] is angle of projection of the stone.
Substitute \[0\,{\text{m/s}}\] for \[{v_y}\], \[u\sin \theta \] for \[{u_y}\] and \[2\,{\text{s}}\] for \[t\] in equation (2).
\[\left( {0\,{\text{m/s}}} \right) = \left( {u\sin \theta } \right) - g\left( {2\,{\text{s}}} \right)\]
\[ \Rightarrow u\sin \theta - 2g = 0\]
\[ \Rightarrow u\sin \theta = 2g\] …… (3)
One second after the projection of stone, the angle made by the stone with the horizontal is \[45^\circ \]. Thus, the horizontal and vertical components of velocity at this point of trajectory should be the same.
Hence, the vertical component of velocity of the stone one second after the projection is \[u\cos \theta \].
\[{v_y} = u\cos \theta \]
Substitute \[u\cos \theta \] for \[{v_y}\], \[u\sin \theta \] for \[{u_y}\] and \[1\,{\text{s}}\] for \[t\] in equation (2).
\[\left( {u\cos \theta } \right) = \left( {u\sin \theta } \right) - g\left( {1\,{\text{s}}} \right)\]
\[ \Rightarrow u\cos \theta = u\sin \theta - g\]
Substitute \[2g\] for \[u\sin \theta \] in the above equation.
\[ \Rightarrow u\cos \theta = 2g - g\]
\[ \Rightarrow u\cos \theta = g\] …… (4)
Divide equation (3) by equation (4).
\[ \Rightarrow \dfrac{{u\sin \theta }}{{u\cos \theta }} = \dfrac{{2g}}{g}\]
\[ \Rightarrow \tan \theta = 2\]
\[ \therefore \theta = {\tan ^{ - 1}}\left( 2 \right)\]
Therefore, the angle of projection of the stone is \[{\tan ^{ - 1}}\left( 2 \right)\].
Hence, the correct option is D.
Note:The students should not get confused between the different values of components of velocity of the stone at different times. One second after projection, the vertical and horizontal component of the stone is the same. Hence, we have considered the horizontal component of velocity as vertical component of velocity one second after the projection of stone as value of both the components is the same.
Formula used:
The first kinematic equation is given by
\[v = u + at\] …… (1)
Here, \[v\] is final velocity of the object, \[u\] is initial velocity of the object, \[a\] is acceleration of the object and \[t\] is the time.
Complete step by step answer:
We have given that the angle of the stone one second after the projection is \[45^\circ \] with the horizontal and two seconds after the projection, the stone moves horizontally.We have asked to determine the angle of projection of the stone.Let us rewrite the equation (1) for the velocity of an object in free fall.
\[{v_y} = {u_y} - gt\] …… (2)
Here, \[{v_y}\] is vertical component of final velocity, \[{u_y}\] is vertical component of initial velocity and \[g\] is acceleration due to gravity.
We have given that two seconds after projection, the stone moves horizontally. Hence, the stone must be at the top most point of the trajectory.At the top most point of projectile motion, the vertical component of velocity of the stone is zero and the vertical component of initial velocity of the stone is \[u\sin \theta \].
\[{v_y} = 0\,{\text{m/s}}\]
\[{u_y} = u\sin \theta \]
Here, \[u\] is the velocity of projection and \[\theta \] is angle of projection of the stone.
Substitute \[0\,{\text{m/s}}\] for \[{v_y}\], \[u\sin \theta \] for \[{u_y}\] and \[2\,{\text{s}}\] for \[t\] in equation (2).
\[\left( {0\,{\text{m/s}}} \right) = \left( {u\sin \theta } \right) - g\left( {2\,{\text{s}}} \right)\]
\[ \Rightarrow u\sin \theta - 2g = 0\]
\[ \Rightarrow u\sin \theta = 2g\] …… (3)
One second after the projection of stone, the angle made by the stone with the horizontal is \[45^\circ \]. Thus, the horizontal and vertical components of velocity at this point of trajectory should be the same.
Hence, the vertical component of velocity of the stone one second after the projection is \[u\cos \theta \].
\[{v_y} = u\cos \theta \]
Substitute \[u\cos \theta \] for \[{v_y}\], \[u\sin \theta \] for \[{u_y}\] and \[1\,{\text{s}}\] for \[t\] in equation (2).
\[\left( {u\cos \theta } \right) = \left( {u\sin \theta } \right) - g\left( {1\,{\text{s}}} \right)\]
\[ \Rightarrow u\cos \theta = u\sin \theta - g\]
Substitute \[2g\] for \[u\sin \theta \] in the above equation.
\[ \Rightarrow u\cos \theta = 2g - g\]
\[ \Rightarrow u\cos \theta = g\] …… (4)
Divide equation (3) by equation (4).
\[ \Rightarrow \dfrac{{u\sin \theta }}{{u\cos \theta }} = \dfrac{{2g}}{g}\]
\[ \Rightarrow \tan \theta = 2\]
\[ \therefore \theta = {\tan ^{ - 1}}\left( 2 \right)\]
Therefore, the angle of projection of the stone is \[{\tan ^{ - 1}}\left( 2 \right)\].
Hence, the correct option is D.
Note:The students should not get confused between the different values of components of velocity of the stone at different times. One second after projection, the vertical and horizontal component of the stone is the same. Hence, we have considered the horizontal component of velocity as vertical component of velocity one second after the projection of stone as value of both the components is the same.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE