
One second after projection, a stone moves at an angle \[45^\circ \] with horizontal. Two seconds after projection, it moves horizontally, its angle of projection is [\[g = 10\,{\text{m/}}{{\text{s}}^2}\]]
A. \[{\tan ^{ - 1}}\left( {\sqrt 3 } \right)\]
B. \[{\tan ^{ - 1}}\left( 4 \right)\]
C. \[{\tan ^{ - 1}}\left( 3 \right)\]
D. \[{\tan ^{ - 1}}\left( 2 \right)\]
Answer
445.2k+ views
Hint: Use the formula for the kinematic equation for final velocity of the object. This equation gives the relation between the final velocity, initial velocity, acceleration and time. Determine the position of the stone two times from the given information. Derive the equation for the vertical component of initial velocity of the stone for time second. Then using the given angle of stone with the horizontal, derive an expression for velocity of stone one second after projection. Hence, determine the angle of projection of the stone.
Formula used:
The first kinematic equation is given by
\[v = u + at\] …… (1)
Here, \[v\] is final velocity of the object, \[u\] is initial velocity of the object, \[a\] is acceleration of the object and \[t\] is the time.
Complete step by step answer:
We have given that the angle of the stone one second after the projection is \[45^\circ \] with the horizontal and two seconds after the projection, the stone moves horizontally.We have asked to determine the angle of projection of the stone.Let us rewrite the equation (1) for the velocity of an object in free fall.
\[{v_y} = {u_y} - gt\] …… (2)
Here, \[{v_y}\] is vertical component of final velocity, \[{u_y}\] is vertical component of initial velocity and \[g\] is acceleration due to gravity.
We have given that two seconds after projection, the stone moves horizontally. Hence, the stone must be at the top most point of the trajectory.At the top most point of projectile motion, the vertical component of velocity of the stone is zero and the vertical component of initial velocity of the stone is \[u\sin \theta \].
\[{v_y} = 0\,{\text{m/s}}\]
\[{u_y} = u\sin \theta \]
Here, \[u\] is the velocity of projection and \[\theta \] is angle of projection of the stone.
Substitute \[0\,{\text{m/s}}\] for \[{v_y}\], \[u\sin \theta \] for \[{u_y}\] and \[2\,{\text{s}}\] for \[t\] in equation (2).
\[\left( {0\,{\text{m/s}}} \right) = \left( {u\sin \theta } \right) - g\left( {2\,{\text{s}}} \right)\]
\[ \Rightarrow u\sin \theta - 2g = 0\]
\[ \Rightarrow u\sin \theta = 2g\] …… (3)
One second after the projection of stone, the angle made by the stone with the horizontal is \[45^\circ \]. Thus, the horizontal and vertical components of velocity at this point of trajectory should be the same.
Hence, the vertical component of velocity of the stone one second after the projection is \[u\cos \theta \].
\[{v_y} = u\cos \theta \]
Substitute \[u\cos \theta \] for \[{v_y}\], \[u\sin \theta \] for \[{u_y}\] and \[1\,{\text{s}}\] for \[t\] in equation (2).
\[\left( {u\cos \theta } \right) = \left( {u\sin \theta } \right) - g\left( {1\,{\text{s}}} \right)\]
\[ \Rightarrow u\cos \theta = u\sin \theta - g\]
Substitute \[2g\] for \[u\sin \theta \] in the above equation.
\[ \Rightarrow u\cos \theta = 2g - g\]
\[ \Rightarrow u\cos \theta = g\] …… (4)
Divide equation (3) by equation (4).
\[ \Rightarrow \dfrac{{u\sin \theta }}{{u\cos \theta }} = \dfrac{{2g}}{g}\]
\[ \Rightarrow \tan \theta = 2\]
\[ \therefore \theta = {\tan ^{ - 1}}\left( 2 \right)\]
Therefore, the angle of projection of the stone is \[{\tan ^{ - 1}}\left( 2 \right)\].
Hence, the correct option is D.
Note:The students should not get confused between the different values of components of velocity of the stone at different times. One second after projection, the vertical and horizontal component of the stone is the same. Hence, we have considered the horizontal component of velocity as vertical component of velocity one second after the projection of stone as value of both the components is the same.
Formula used:
The first kinematic equation is given by
\[v = u + at\] …… (1)
Here, \[v\] is final velocity of the object, \[u\] is initial velocity of the object, \[a\] is acceleration of the object and \[t\] is the time.
Complete step by step answer:
We have given that the angle of the stone one second after the projection is \[45^\circ \] with the horizontal and two seconds after the projection, the stone moves horizontally.We have asked to determine the angle of projection of the stone.Let us rewrite the equation (1) for the velocity of an object in free fall.
\[{v_y} = {u_y} - gt\] …… (2)
Here, \[{v_y}\] is vertical component of final velocity, \[{u_y}\] is vertical component of initial velocity and \[g\] is acceleration due to gravity.
We have given that two seconds after projection, the stone moves horizontally. Hence, the stone must be at the top most point of the trajectory.At the top most point of projectile motion, the vertical component of velocity of the stone is zero and the vertical component of initial velocity of the stone is \[u\sin \theta \].
\[{v_y} = 0\,{\text{m/s}}\]
\[{u_y} = u\sin \theta \]
Here, \[u\] is the velocity of projection and \[\theta \] is angle of projection of the stone.
Substitute \[0\,{\text{m/s}}\] for \[{v_y}\], \[u\sin \theta \] for \[{u_y}\] and \[2\,{\text{s}}\] for \[t\] in equation (2).
\[\left( {0\,{\text{m/s}}} \right) = \left( {u\sin \theta } \right) - g\left( {2\,{\text{s}}} \right)\]
\[ \Rightarrow u\sin \theta - 2g = 0\]
\[ \Rightarrow u\sin \theta = 2g\] …… (3)
One second after the projection of stone, the angle made by the stone with the horizontal is \[45^\circ \]. Thus, the horizontal and vertical components of velocity at this point of trajectory should be the same.
Hence, the vertical component of velocity of the stone one second after the projection is \[u\cos \theta \].
\[{v_y} = u\cos \theta \]
Substitute \[u\cos \theta \] for \[{v_y}\], \[u\sin \theta \] for \[{u_y}\] and \[1\,{\text{s}}\] for \[t\] in equation (2).
\[\left( {u\cos \theta } \right) = \left( {u\sin \theta } \right) - g\left( {1\,{\text{s}}} \right)\]
\[ \Rightarrow u\cos \theta = u\sin \theta - g\]
Substitute \[2g\] for \[u\sin \theta \] in the above equation.
\[ \Rightarrow u\cos \theta = 2g - g\]
\[ \Rightarrow u\cos \theta = g\] …… (4)
Divide equation (3) by equation (4).
\[ \Rightarrow \dfrac{{u\sin \theta }}{{u\cos \theta }} = \dfrac{{2g}}{g}\]
\[ \Rightarrow \tan \theta = 2\]
\[ \therefore \theta = {\tan ^{ - 1}}\left( 2 \right)\]
Therefore, the angle of projection of the stone is \[{\tan ^{ - 1}}\left( 2 \right)\].
Hence, the correct option is D.
Note:The students should not get confused between the different values of components of velocity of the stone at different times. One second after projection, the vertical and horizontal component of the stone is the same. Hence, we have considered the horizontal component of velocity as vertical component of velocity one second after the projection of stone as value of both the components is the same.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
