
One line passes through the point \[(1,9)\] and $(2,6)$ another line passes through $(3,3)$ and $( - 1,5)$. Then the acute angle between the two lines:
A. ${30^0}$
B. ${45^0}$
C. ${60^0}$
D. ${135^0}$
Answer
578.4k+ views
Hint: Here we use the points given to find slopes of two different lines and then using the formula for angle between the lines we can find the measure of the angle.
* The slope of line passing through two points$({x_1},{y_1})$ and $({x_2},{y_2})$ is given by $m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}.$
* The angle $\theta $ between two lines whose slopes are ${m_1}$ and ${m_2}$ is given by the formula:
$\theta = {\tan ^{ - 1}}(\dfrac{{{m_2} - {m_1}}}{{1 - {m_1}{m_2}}})$.
Complete step-by-step answer:
Find the slope of the first line.
Let the slope of the line passing through\[(1,9)\] and $(2,6)$ be denoted by ${m_1}$.
Here, $({x_1},{y_1}) = (1,9)$ and $({x_2},{y_2}) = (2,6)$.
Substitute these values in slope formula ${m_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$
$ \Rightarrow {m_1} = \dfrac{{6 - 9}}{{2 - 1}}$
$
\Rightarrow {m_1} = \dfrac{{ - 3}}{1} \\
\Rightarrow {m_1} = - 3 \\
$
Find the slope of the second line.
Let the slope of the line passing through \[(3,3)\] and $( - 1,5)$ be denoted by ${m_2}$.
Here, $({x_1},{y_1}) = (3,3)$ and $({x_2},{y_2}) = ( - 1,5)$.
Substitute these values in slope formula ${m_2} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}.$
$ \Rightarrow {m_2} = \dfrac{{5 - 3}}{{ - 1 - 3}}$
$ \Rightarrow {m_2} = \dfrac{2}{{ - 4}}$
$ \Rightarrow {m_2} = - \dfrac{1}{2}$
Find the angle between two lines.
Find the angle between two lines using the formula: $\theta = {\tan ^{ - 1}}(\dfrac{{{m_2} - {m_1}}}{{1 - {m_1}{m_2}}})$, put ${m_1} = - 3,{m_2} = - \dfrac{1}{2}$
$ \Rightarrow \theta = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {\dfrac{{ - 1}}{2} - ( - 3)} \right)}}{{\left( {1 - ( - \dfrac{1}{2})(3)} \right)}}} \right]$
$ \Rightarrow \theta = {\tan ^{ - 1}}\left[ {\dfrac{{\left( { - \dfrac{1}{2} + 3} \right)}}{{\left( {1 + \dfrac{3}{2}} \right)}}} \right]$
Solving both numerator and denominator by taking LCM separately.
$
\Rightarrow \theta = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {\dfrac{{ - 1 + 6}}{2}} \right)}}{{\left( {\dfrac{{2 + 3}}{2}} \right)}}} \right] \\
\Rightarrow \theta = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {\dfrac{5}{2}} \right)}}{{\left( {\dfrac{5}{2}} \right)}}} \right] \\
$
$ \Rightarrow \theta = {\tan ^{ - 1}}(1)$
We know \[\tan ({45^ \circ }) = 1\]
$ \Rightarrow \theta = {\tan ^{ - 1}}(\tan {45^ \circ })$
Since, \[{f^{ - 1}}(f(x)) = x\]
$ \Rightarrow \theta = {45^0}$
Since, the angle is less than \[{90^ \circ }\], therefore it is an acute angle.
So, the correct answer is “Option B”.
Note: Students many times make mistakes while finding the value of angle, they should always write the value inside the inverse function as the function and then cancel the inverse function with the function. Also, keep in mind slope of a line should be in simplest form, i.e. there should be no common factor between the numerator and denominator.
* The slope of line passing through two points$({x_1},{y_1})$ and $({x_2},{y_2})$ is given by $m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}.$
* The angle $\theta $ between two lines whose slopes are ${m_1}$ and ${m_2}$ is given by the formula:
$\theta = {\tan ^{ - 1}}(\dfrac{{{m_2} - {m_1}}}{{1 - {m_1}{m_2}}})$.
Complete step-by-step answer:
Find the slope of the first line.
Let the slope of the line passing through\[(1,9)\] and $(2,6)$ be denoted by ${m_1}$.
Here, $({x_1},{y_1}) = (1,9)$ and $({x_2},{y_2}) = (2,6)$.
Substitute these values in slope formula ${m_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$
$ \Rightarrow {m_1} = \dfrac{{6 - 9}}{{2 - 1}}$
$
\Rightarrow {m_1} = \dfrac{{ - 3}}{1} \\
\Rightarrow {m_1} = - 3 \\
$
Find the slope of the second line.
Let the slope of the line passing through \[(3,3)\] and $( - 1,5)$ be denoted by ${m_2}$.
Here, $({x_1},{y_1}) = (3,3)$ and $({x_2},{y_2}) = ( - 1,5)$.
Substitute these values in slope formula ${m_2} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}.$
$ \Rightarrow {m_2} = \dfrac{{5 - 3}}{{ - 1 - 3}}$
$ \Rightarrow {m_2} = \dfrac{2}{{ - 4}}$
$ \Rightarrow {m_2} = - \dfrac{1}{2}$
Find the angle between two lines.
Find the angle between two lines using the formula: $\theta = {\tan ^{ - 1}}(\dfrac{{{m_2} - {m_1}}}{{1 - {m_1}{m_2}}})$, put ${m_1} = - 3,{m_2} = - \dfrac{1}{2}$
$ \Rightarrow \theta = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {\dfrac{{ - 1}}{2} - ( - 3)} \right)}}{{\left( {1 - ( - \dfrac{1}{2})(3)} \right)}}} \right]$
$ \Rightarrow \theta = {\tan ^{ - 1}}\left[ {\dfrac{{\left( { - \dfrac{1}{2} + 3} \right)}}{{\left( {1 + \dfrac{3}{2}} \right)}}} \right]$
Solving both numerator and denominator by taking LCM separately.
$
\Rightarrow \theta = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {\dfrac{{ - 1 + 6}}{2}} \right)}}{{\left( {\dfrac{{2 + 3}}{2}} \right)}}} \right] \\
\Rightarrow \theta = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {\dfrac{5}{2}} \right)}}{{\left( {\dfrac{5}{2}} \right)}}} \right] \\
$
$ \Rightarrow \theta = {\tan ^{ - 1}}(1)$
We know \[\tan ({45^ \circ }) = 1\]
$ \Rightarrow \theta = {\tan ^{ - 1}}(\tan {45^ \circ })$
Since, \[{f^{ - 1}}(f(x)) = x\]
$ \Rightarrow \theta = {45^0}$
Since, the angle is less than \[{90^ \circ }\], therefore it is an acute angle.
So, the correct answer is “Option B”.
Note: Students many times make mistakes while finding the value of angle, they should always write the value inside the inverse function as the function and then cancel the inverse function with the function. Also, keep in mind slope of a line should be in simplest form, i.e. there should be no common factor between the numerator and denominator.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

