Answer
Verified
428.1k+ views
Hint: Here, we will proceed by defining the gravitational force of attraction. Then, we will state Newton's universal law of gravitation. Finally, we will obtain the expression for gravitational force of attraction.
Complete answer:
Gravitational force is a force that draws mass to every two objects. We consider attractive gravitational force because it always tries to pull masses together, it never drives them apart. In fact, every object is pulling on every other object in the whole universe, including you! That is called the universal law of gravitation by Newton. Of course, you don't have a very large mass and so, you don't pull much on those other objects. And objects really far apart from each other also don't noticeably pull on each other. But there is the force, and we can compute it.
The Law of Universal Gravitation states that each point mass attracts any other point mass in the universe by a force pointing in a straight line towards the center of mass of both points, and this force is proportional to the masses of the objects, and inversely proportional to their separation. The Law refers to all massed objects, large or small.
If two bodies have masses M and m divided by a distance r, then the gravitational force of attraction is given by
${\text{F}} \propto {\text{Mm}}$ and ${\text{F}} \propto \dfrac{1}{{{{\text{r}}^2}}}$
By combining the above inequalities, we have
${\text{F}} \propto \dfrac{{{\text{Mm}}}}{{{{\text{r}}^2}}}$
By eliminating the proportionality sign and using a constant G, we get
${\text{F}} = \dfrac{{{\text{GMm}}}}{{{{\text{r}}^2}}}$ where F denotes the gravitational force of attraction, G denotes the gravitational constant, M denotes the mass of one object, m denotes the mass of the other object and r denotes the distance of separation between these two objects.
Clearly, we can see that the gravitational constant (G) is a constant and its value is equal to 6.674$ \times {10^{ - 11}}{\text{ }}\dfrac{{{\text{N}}{{\text{m}}^2}}}{{{\text{k}}{{\text{g}}^2}}}$ and doesn’t depend on any factor.
So, the correct answer is “Option D”.
Note:
Two large objects may be known as point-like masses if there is a very large distance between them relative to their sizes or if they are spherically symmetrical. The mass of each object can be represented as a point mass at its center of mass for these cases.
Complete answer:
Gravitational force is a force that draws mass to every two objects. We consider attractive gravitational force because it always tries to pull masses together, it never drives them apart. In fact, every object is pulling on every other object in the whole universe, including you! That is called the universal law of gravitation by Newton. Of course, you don't have a very large mass and so, you don't pull much on those other objects. And objects really far apart from each other also don't noticeably pull on each other. But there is the force, and we can compute it.
The Law of Universal Gravitation states that each point mass attracts any other point mass in the universe by a force pointing in a straight line towards the center of mass of both points, and this force is proportional to the masses of the objects, and inversely proportional to their separation. The Law refers to all massed objects, large or small.
If two bodies have masses M and m divided by a distance r, then the gravitational force of attraction is given by
${\text{F}} \propto {\text{Mm}}$ and ${\text{F}} \propto \dfrac{1}{{{{\text{r}}^2}}}$
By combining the above inequalities, we have
${\text{F}} \propto \dfrac{{{\text{Mm}}}}{{{{\text{r}}^2}}}$
By eliminating the proportionality sign and using a constant G, we get
${\text{F}} = \dfrac{{{\text{GMm}}}}{{{{\text{r}}^2}}}$ where F denotes the gravitational force of attraction, G denotes the gravitational constant, M denotes the mass of one object, m denotes the mass of the other object and r denotes the distance of separation between these two objects.
Clearly, we can see that the gravitational constant (G) is a constant and its value is equal to 6.674$ \times {10^{ - 11}}{\text{ }}\dfrac{{{\text{N}}{{\text{m}}^2}}}{{{\text{k}}{{\text{g}}^2}}}$ and doesn’t depend on any factor.
So, the correct answer is “Option D”.
Note:
Two large objects may be known as point-like masses if there is a very large distance between them relative to their sizes or if they are spherically symmetrical. The mass of each object can be represented as a point mass at its center of mass for these cases.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Bimbisara was the founder of dynasty A Nanda B Haryanka class 6 social science CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
10 examples of evaporation in daily life with explanations
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
Difference Between Plant Cell and Animal Cell