Answer

Verified

385.2k+ views

**Hint:**Here, we will first denote the given linear equation in the form of a general linear equation. We will then find the ratio of the coefficients of \[x\], coefficients of \[y\] and constant term. Then we will compare all the ratios and find the type of line based on the comparison. Linear equations are the equations of first order which represents the equation of line.

**Complete step-by-step answer:**We are given the linear equation \[6x - 3y + 10 = 0\] and \[2x - y + 9 = 0\].

Linear equation is of the general form \[ax + by + c = 0\].

So, the given linear equation \[6x - 3y + 10 = 0\] is of the form \[{a_1}x + {b_1}y + {c_1} = 0\].

Now, the given linear equation \[2x - y + 9 = 0\] is of the form \[{a_2}x + {b_2}y + {c_2} = 0\]

By comparing the coefficients of the given linear equation with the general linear equation, we get

\[{a_1} = 6,{b_1} = - 3,{c_1} = 10\] and \[{a_2} = 2,{b_2} = - 1,{c_2} = 9\]

Now, we will find the ratio of the coefficients of \[x\], coefficients of \[y\]and constant term by substituting the values.

Ratio of the coefficients of \[x\] \[ = \dfrac{{{a_1}}}{{{a_2}}} = \dfrac{6}{2}\]

Dividing 6 by 2, we get

\[ \Rightarrow \] Ratio of the coefficients of \[x\] \[ = \dfrac{{{a_1}}}{{{a_2}}} = 3\] …………………………………………………………. \[\left( 1 \right)\]

Ratio of the coefficients of \[y\] \[ = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{ - 3}}{{ - 1}}\]

Dividing the terms, we get

\[ \Rightarrow \] Ratio of the coefficients of \[y\] \[ = \dfrac{{{b_1}}}{{{b_2}}} = 3\] …………………………………………………………… \[\left( 2 \right)\]

Ratio of the coefficients of constant term \[ = \dfrac{{{c_1}}}{{{c_2}}} = \dfrac{{10}}{9}\] ……………………………….. \[\left( 3 \right)\]

Now, comparing the ratios of the coefficients of \[x\], coefficients of \[y\]and constant term, we get \[\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} \ne \dfrac{{{c_1}}}{{{c_2}}}\]

If \[\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} \ne \dfrac{{{c_1}}}{{{c_2}}}\], so we have no solution. Thus the lines represent that the linear equations are parallel.

Therefore, the lines representing the linear equations \[6x - 3y + 10 = 0;2x - y + 9 = 0\] are parallel.

**Thus option (B) is correct.**

**Note:**We might make a mistake in comparing the ratios by considering only the ratios of the coefficients of \[x\], coefficients of \[y\] and leaving off the third ratio of the constant term. It is essential for us to take the ratio of the constant term into consideration to find the correct type of line. In order to find whether the lines are parallel or coincident, we need to consider the following points:

1.If \[\dfrac{{{a_1}}}{{{a_2}}} \ne \dfrac{{{b_1}}}{{{b_2}}}\], we have unique solution, so the lines intersect at a point.

2.If \[\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} = \dfrac{{{c_1}}}{{{c_2}}}\], we have infinite solutions, so the lines are coincident.

3.If \[\dfrac{{{a_1}}}{{{a_2}}} = \dfrac{{{b_1}}}{{{b_2}}} \ne \dfrac{{{c_1}}}{{{c_2}}}\], we have no solutions, so the lines are parallel.

Recently Updated Pages

The base of a right prism is a pentagon whose sides class 10 maths CBSE

A die is thrown Find the probability that the number class 10 maths CBSE

A mans age is six times the age of his son In six years class 10 maths CBSE

A started a business with Rs 21000 and is joined afterwards class 10 maths CBSE

Aasifbhai bought a refrigerator at Rs 10000 After some class 10 maths CBSE

Give a brief history of the mathematician Pythagoras class 10 maths CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Name 10 Living and Non living things class 9 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Write the 6 fundamental rights of India and explain in detail