
Obtain the inverse of the following matrix using elementary operations $A = \left[ {\begin{array}{*{20}{c}}
0&1&2 \\
1&2&3 \\
3&1&1
\end{array}} \right]$
Answer
570.9k+ views
Hint: In this question, we need to determine the inverse of matrix A through elementary operations only. For this, we will use the property of the matrix, i.e., $A = IA$ and perform the row transformation here.
Complete step-by-step answer:
The given matrix $A = \left[ {\begin{array}{*{20}{c}}
0&1&2 \\
1&2&3 \\
3&1&1
\end{array}} \right]$ is a 3x3 matrix.
The first step in determining the inverse of the square matrix is to consider $A = IA$ such that $I$ is an elementary matrix of size 3x3 having values of the cells as ${I_{3 \times 3}} = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]$
So, we can write:
$\left[ {\begin{array}{*{20}{c}}
0&1&2 \\
1&2&3 \\
3&1&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]A - - - - (i)$
Now, we have to do elementary row transformation here so as to obtain an elementary matrix on the left-hand side of the equation (i) and thus the corresponding matrix associated with A in the right-hand side of the equation (i) will be the inverse of the matrix A as $A{A^{ - 1}} = I$.
Applying ${R_1} \leftrightarrow {R_2}$ to both sides of the equation (i), we get
$\left[ {\begin{array}{*{20}{c}}
1&2&3 \\
0&1&2 \\
3&1&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&1&0 \\
1&0&0 \\
0&0&1
\end{array}} \right]A - - - - (ii)$
Applying ${R_3} \to {R_3} - 3{R_1}$ to both sides of the equation (ii), we get$
\left[ {\begin{array}{*{20}{c}}
1&2&3 \\
0&1&2 \\
{3 - 3}&{1 - 6}&{1 - 9}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&1&0 \\
1&0&0 \\
0&{0 - 3}&{1 - 0}
\end{array}} \right]A \\
\left[ {\begin{array}{*{20}{c}}
1&2&3 \\
0&1&2 \\
0&{ - 5}&{ - 8}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&1&0 \\
1&0&0 \\
0&{ - 3}&1
\end{array}} \right]A - - - - (iii) \\
$
Applying ${R_1} \to {R_1} - 2{R_2}$ to both sides of the equation (iii), we get$
\left[ {\begin{array}{*{20}{c}}
{1 - 0}&{2 - 2}&{3 - 4} \\
0&1&2 \\
0&{ - 5}&{ - 8}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{0 - 2}&{1 - 0}&0 \\
1&0&0 \\
0&{ - 3}&1
\end{array}} \right]A \\
\left[ {\begin{array}{*{20}{c}}
1&0&{ - 1} \\
0&1&2 \\
0&{ - 5}&{ - 8}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&1&0 \\
1&0&0 \\
0&{ - 3}&1
\end{array}} \right]A - - - - (iv) \\
$
Applying ${R_3} \to {R_3} + 5{R_2}$ to both sides of the equation (iv), we get$
\left[ {\begin{array}{*{20}{c}}
1&0&{ - 1} \\
0&1&2 \\
{0 + 0}&{ - 5 + 5}&{ - 8 + 10}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&1&0 \\
1&0&0 \\
{0 + 5}&{ - 3 + 0}&{1 + 0}
\end{array}} \right]A \\
\left[ {\begin{array}{*{20}{c}}
1&0&{ - 1} \\
0&1&2 \\
0&0&2
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&1&0 \\
1&0&0 \\
5&{ - 3}&1
\end{array}} \right]A - - - - (v) \\
$
Applying ${R_3} \to \dfrac{1}{2}{R_3}$ to both sides of the equation (v), we get$\left[ {\begin{array}{*{20}{c}}
1&0&{ - 1} \\
0&1&2 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&1&0 \\
1&0&0 \\
{\dfrac{5}{2}}&{\dfrac{{ - 3}}{2}}&{\dfrac{1}{2}}
\end{array}} \right]A - - - - (vi)$
Applying ${R_1} \to {R_1} + {R_3}$ to both sides of the equation (vi), we get$
\left[ {\begin{array}{*{20}{c}}
{1 + 0}&{0 + 0}&{ - 1 + 1} \\
0&1&2 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2 + \dfrac{5}{2}}&{1 - \dfrac{3}{2}}&{0 + \dfrac{1}{2}} \\
1&0&0 \\
{\dfrac{5}{2}}&{\dfrac{{ - 3}}{2}}&{\dfrac{1}{2}}
\end{array}} \right]A \\
\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&2 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&{ - \dfrac{1}{2}}&{\dfrac{1}{2}} \\
1&0&0 \\
{\dfrac{5}{2}}&{\dfrac{{ - 3}}{2}}&{\dfrac{1}{2}}
\end{array}} \right]A - - - - (vii) \\
$
Applying ${R_2} \to {R_2} - 2{R_3}$ to both sides of the equation (vii), we get$
\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
{0 - 0}&{1 - 0}&{2 - 2} \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&{ - \dfrac{1}{2}}&{\dfrac{1}{2}} \\
{1 - 2\left( {\dfrac{5}{2}} \right)}&{0 - 2\left( {\dfrac{{ - 3}}{2}} \right)}&{0 - 2\left( {\dfrac{1}{2}} \right)} \\
{\dfrac{5}{2}}&{\dfrac{{ - 3}}{2}}&{\dfrac{1}{2}}
\end{array}} \right]A \\
\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&{ - \dfrac{1}{2}}&{\dfrac{1}{2}} \\
{ - 4}&3&{ - 1} \\
{\dfrac{5}{2}}&{\dfrac{{ - 3}}{2}}&{\dfrac{1}{2}}
\end{array}} \right]A - - - - (viii) \\
$
From equation (viii) we can see that the left-hand side is an elementary equation so, the matrix associated with A to the right-hand side of the equation will be the inverse of the A matrix.
Hence, ${A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&{ - \dfrac{1}{2}}&{\dfrac{1}{2}} \\
{ - 4}&3&{ - 1} \\
{\dfrac{5}{2}}&{\dfrac{{ - 3}}{2}}&{\dfrac{1}{2}}
\end{array}} \right]$.
Note: It should be noted here that the while performing elementary operations on the matrix always follow either of the row operations or the column operations but not both. Here, we have used only the row operations.
Complete step-by-step answer:
The given matrix $A = \left[ {\begin{array}{*{20}{c}}
0&1&2 \\
1&2&3 \\
3&1&1
\end{array}} \right]$ is a 3x3 matrix.
The first step in determining the inverse of the square matrix is to consider $A = IA$ such that $I$ is an elementary matrix of size 3x3 having values of the cells as ${I_{3 \times 3}} = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]$
So, we can write:
$\left[ {\begin{array}{*{20}{c}}
0&1&2 \\
1&2&3 \\
3&1&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]A - - - - (i)$
Now, we have to do elementary row transformation here so as to obtain an elementary matrix on the left-hand side of the equation (i) and thus the corresponding matrix associated with A in the right-hand side of the equation (i) will be the inverse of the matrix A as $A{A^{ - 1}} = I$.
Applying ${R_1} \leftrightarrow {R_2}$ to both sides of the equation (i), we get
$\left[ {\begin{array}{*{20}{c}}
1&2&3 \\
0&1&2 \\
3&1&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&1&0 \\
1&0&0 \\
0&0&1
\end{array}} \right]A - - - - (ii)$
Applying ${R_3} \to {R_3} - 3{R_1}$ to both sides of the equation (ii), we get$
\left[ {\begin{array}{*{20}{c}}
1&2&3 \\
0&1&2 \\
{3 - 3}&{1 - 6}&{1 - 9}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&1&0 \\
1&0&0 \\
0&{0 - 3}&{1 - 0}
\end{array}} \right]A \\
\left[ {\begin{array}{*{20}{c}}
1&2&3 \\
0&1&2 \\
0&{ - 5}&{ - 8}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&1&0 \\
1&0&0 \\
0&{ - 3}&1
\end{array}} \right]A - - - - (iii) \\
$
Applying ${R_1} \to {R_1} - 2{R_2}$ to both sides of the equation (iii), we get$
\left[ {\begin{array}{*{20}{c}}
{1 - 0}&{2 - 2}&{3 - 4} \\
0&1&2 \\
0&{ - 5}&{ - 8}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{0 - 2}&{1 - 0}&0 \\
1&0&0 \\
0&{ - 3}&1
\end{array}} \right]A \\
\left[ {\begin{array}{*{20}{c}}
1&0&{ - 1} \\
0&1&2 \\
0&{ - 5}&{ - 8}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&1&0 \\
1&0&0 \\
0&{ - 3}&1
\end{array}} \right]A - - - - (iv) \\
$
Applying ${R_3} \to {R_3} + 5{R_2}$ to both sides of the equation (iv), we get$
\left[ {\begin{array}{*{20}{c}}
1&0&{ - 1} \\
0&1&2 \\
{0 + 0}&{ - 5 + 5}&{ - 8 + 10}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&1&0 \\
1&0&0 \\
{0 + 5}&{ - 3 + 0}&{1 + 0}
\end{array}} \right]A \\
\left[ {\begin{array}{*{20}{c}}
1&0&{ - 1} \\
0&1&2 \\
0&0&2
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&1&0 \\
1&0&0 \\
5&{ - 3}&1
\end{array}} \right]A - - - - (v) \\
$
Applying ${R_3} \to \dfrac{1}{2}{R_3}$ to both sides of the equation (v), we get$\left[ {\begin{array}{*{20}{c}}
1&0&{ - 1} \\
0&1&2 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&1&0 \\
1&0&0 \\
{\dfrac{5}{2}}&{\dfrac{{ - 3}}{2}}&{\dfrac{1}{2}}
\end{array}} \right]A - - - - (vi)$
Applying ${R_1} \to {R_1} + {R_3}$ to both sides of the equation (vi), we get$
\left[ {\begin{array}{*{20}{c}}
{1 + 0}&{0 + 0}&{ - 1 + 1} \\
0&1&2 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2 + \dfrac{5}{2}}&{1 - \dfrac{3}{2}}&{0 + \dfrac{1}{2}} \\
1&0&0 \\
{\dfrac{5}{2}}&{\dfrac{{ - 3}}{2}}&{\dfrac{1}{2}}
\end{array}} \right]A \\
\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&2 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&{ - \dfrac{1}{2}}&{\dfrac{1}{2}} \\
1&0&0 \\
{\dfrac{5}{2}}&{\dfrac{{ - 3}}{2}}&{\dfrac{1}{2}}
\end{array}} \right]A - - - - (vii) \\
$
Applying ${R_2} \to {R_2} - 2{R_3}$ to both sides of the equation (vii), we get$
\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
{0 - 0}&{1 - 0}&{2 - 2} \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&{ - \dfrac{1}{2}}&{\dfrac{1}{2}} \\
{1 - 2\left( {\dfrac{5}{2}} \right)}&{0 - 2\left( {\dfrac{{ - 3}}{2}} \right)}&{0 - 2\left( {\dfrac{1}{2}} \right)} \\
{\dfrac{5}{2}}&{\dfrac{{ - 3}}{2}}&{\dfrac{1}{2}}
\end{array}} \right]A \\
\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&{ - \dfrac{1}{2}}&{\dfrac{1}{2}} \\
{ - 4}&3&{ - 1} \\
{\dfrac{5}{2}}&{\dfrac{{ - 3}}{2}}&{\dfrac{1}{2}}
\end{array}} \right]A - - - - (viii) \\
$
From equation (viii) we can see that the left-hand side is an elementary equation so, the matrix associated with A to the right-hand side of the equation will be the inverse of the A matrix.
Hence, ${A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&{ - \dfrac{1}{2}}&{\dfrac{1}{2}} \\
{ - 4}&3&{ - 1} \\
{\dfrac{5}{2}}&{\dfrac{{ - 3}}{2}}&{\dfrac{1}{2}}
\end{array}} \right]$.
Note: It should be noted here that the while performing elementary operations on the matrix always follow either of the row operations or the column operations but not both. Here, we have used only the row operations.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

