Answer
Verified
387.6k+ views
Hint: We will look at the Taylor's series expansion for a function $f\left( x \right)$ about a point $x=a$. Then we will find the derivative of the given function. As Taylor's series expansion has terms with higher-order derivatives, we will compute them for the given function. We will then substitute the value $x=\dfrac{\pi }{3}$ in the derivatives obtained. We will put the obtained results in Taylor's series expansion.
Complete step-by-step solution
The Taylor's series expansion a function $f\left( x \right)$ about a point $x=a$ is given by
$f\left( x \right)=f\left( a \right)+{f}'\left( a \right)\left( x-a \right)+\dfrac{{f}''\left( a \right)}{2!}{{\left( x-a \right)}^{2}}+\dfrac{{{f}^{(3)}}\left( a \right)}{3!}{{\left( x-a \right)}^{3}}+\cdots $
The given function is $f\left( x \right)=\log \left( \cos x \right)$. We have to find the Taylor's series expansion of the given function upto the fourth degree term. So, we will compute upto the fourth derivative of the given function.
The value of the function at $x=\dfrac{\pi }{3}$ is $f\left( \dfrac{\pi }{3} \right)=\log \left( \cos \dfrac{\pi }{3} \right)=\log \left( \dfrac{1}{2} \right)$.
The first derivative of $f\left( x \right)$ is ${f}'\left( x \right)=\dfrac{1}{\cos x}\times -\sin x$. The value of the first derivative at $x=\dfrac{\pi }{3}$ is ${f}'\left( \dfrac{\pi }{3} \right)=\dfrac{1}{\cos \dfrac{\pi }{3}}\times -\sin \dfrac{\pi }{3}=\dfrac{1}{\left( \dfrac{1}{2} \right)}\times -\dfrac{\sqrt{3}}{2}=-\sqrt{3}$.
The second derivative of $f\left( x \right)$ is ${f}''\left( x \right)=-{{\sec }^{2}}x$. The value of the second derivative at $x=\dfrac{\pi }{3}$ is ${f}''\left( \dfrac{\pi }{3} \right)=-{{\sec }^{2}}\dfrac{\pi }{3}=-\dfrac{1}{{{\cos }^{2}}\dfrac{\pi }{3}}=-\dfrac{1}{{{\left( \dfrac{1}{2} \right)}^{2}}}=-4$.
The third derivative of $f\left( x \right)$ is ${{f}^{(3)}}\left( x \right)=-2{{\sec }^{2}}x\tan x$. The value of the second derivative at $x=\dfrac{\pi }{3}$ is ${{f}^{(3)}}\left( \dfrac{\pi }{3} \right)=-2{{\sec }^{2}}\dfrac{\pi }{3}\tan \dfrac{\pi }{3}=-2\times 4\times \sqrt{3}=-8\sqrt{3}$.
The fourth derivative of $f\left( x \right)$ is ${{f}^{(4)}}\left( x \right)=4{{\sec }^{2}}x{{\tan }^{2}}x+2{{\sec }^{4}}x$. The value of the second derivative at $x=\dfrac{\pi }{3}$ is
$\begin{align}
& {{f}^{(4)}}\left( \dfrac{\pi }{3} \right)=4{{\sec }^{2}}\dfrac{\pi }{3}{{\tan }^{2}}\dfrac{\pi }{3}+2{{\sec }^{4}}\dfrac{\pi }{3} \\
& =4\times 4\times {{\sqrt{3}}^{2}}+2\times \dfrac{1}{{{\left( \dfrac{1}{2} \right)}^{2}}}=48+2\times 16=48+32=80
\end{align}$
Now, substituting all these values in the Taylor's expansion series, we get
$f\left( \log \left( \cos x \right) \right)=\log \left( \dfrac{1}{2} \right)+\left( -\sqrt{3} \right)\left( x-\dfrac{\pi }{3} \right)+\dfrac{\left( -4 \right)}{2!}{{\left( x-\dfrac{\pi }{3} \right)}^{2}}+\dfrac{\left( -8\sqrt{3} \right)}{3!}{{\left( x-\dfrac{\pi }{3} \right)}^{3}}+\dfrac{80}{4!}{{\left( x-\dfrac{\pi }{3} \right)}^{4}}$
Simplifying the above equation, we get
$f\left( \log \left( \cos x \right) \right)=\log \left( \dfrac{1}{2} \right)-\sqrt{3}\left( x-\dfrac{\pi }{3} \right)-2{{\left( x-\dfrac{\pi }{3} \right)}^{2}}-\dfrac{4\sqrt{3}}{3}{{\left( x-\dfrac{\pi }{3} \right)}^{3}}+\dfrac{10}{3}{{\left( x-\dfrac{\pi }{3} \right)}^{4}}$
The above equation is the Taylor's series expansion up to the fourth degree term of the function $f\left( x \right)=\log \left( \cos x \right)$.
Note: In this type of question, it is necessary that we are familiar with the derivatives of standard functions. It is also important that we know the values of trigonometric functions for standard angles. This will make the calculations a little bit easier. It is useful to calculate every derivative separately so that we can avoid making errors in the calculations.
Complete step-by-step solution
The Taylor's series expansion a function $f\left( x \right)$ about a point $x=a$ is given by
$f\left( x \right)=f\left( a \right)+{f}'\left( a \right)\left( x-a \right)+\dfrac{{f}''\left( a \right)}{2!}{{\left( x-a \right)}^{2}}+\dfrac{{{f}^{(3)}}\left( a \right)}{3!}{{\left( x-a \right)}^{3}}+\cdots $
The given function is $f\left( x \right)=\log \left( \cos x \right)$. We have to find the Taylor's series expansion of the given function upto the fourth degree term. So, we will compute upto the fourth derivative of the given function.
The value of the function at $x=\dfrac{\pi }{3}$ is $f\left( \dfrac{\pi }{3} \right)=\log \left( \cos \dfrac{\pi }{3} \right)=\log \left( \dfrac{1}{2} \right)$.
The first derivative of $f\left( x \right)$ is ${f}'\left( x \right)=\dfrac{1}{\cos x}\times -\sin x$. The value of the first derivative at $x=\dfrac{\pi }{3}$ is ${f}'\left( \dfrac{\pi }{3} \right)=\dfrac{1}{\cos \dfrac{\pi }{3}}\times -\sin \dfrac{\pi }{3}=\dfrac{1}{\left( \dfrac{1}{2} \right)}\times -\dfrac{\sqrt{3}}{2}=-\sqrt{3}$.
The second derivative of $f\left( x \right)$ is ${f}''\left( x \right)=-{{\sec }^{2}}x$. The value of the second derivative at $x=\dfrac{\pi }{3}$ is ${f}''\left( \dfrac{\pi }{3} \right)=-{{\sec }^{2}}\dfrac{\pi }{3}=-\dfrac{1}{{{\cos }^{2}}\dfrac{\pi }{3}}=-\dfrac{1}{{{\left( \dfrac{1}{2} \right)}^{2}}}=-4$.
The third derivative of $f\left( x \right)$ is ${{f}^{(3)}}\left( x \right)=-2{{\sec }^{2}}x\tan x$. The value of the second derivative at $x=\dfrac{\pi }{3}$ is ${{f}^{(3)}}\left( \dfrac{\pi }{3} \right)=-2{{\sec }^{2}}\dfrac{\pi }{3}\tan \dfrac{\pi }{3}=-2\times 4\times \sqrt{3}=-8\sqrt{3}$.
The fourth derivative of $f\left( x \right)$ is ${{f}^{(4)}}\left( x \right)=4{{\sec }^{2}}x{{\tan }^{2}}x+2{{\sec }^{4}}x$. The value of the second derivative at $x=\dfrac{\pi }{3}$ is
$\begin{align}
& {{f}^{(4)}}\left( \dfrac{\pi }{3} \right)=4{{\sec }^{2}}\dfrac{\pi }{3}{{\tan }^{2}}\dfrac{\pi }{3}+2{{\sec }^{4}}\dfrac{\pi }{3} \\
& =4\times 4\times {{\sqrt{3}}^{2}}+2\times \dfrac{1}{{{\left( \dfrac{1}{2} \right)}^{2}}}=48+2\times 16=48+32=80
\end{align}$
Now, substituting all these values in the Taylor's expansion series, we get
$f\left( \log \left( \cos x \right) \right)=\log \left( \dfrac{1}{2} \right)+\left( -\sqrt{3} \right)\left( x-\dfrac{\pi }{3} \right)+\dfrac{\left( -4 \right)}{2!}{{\left( x-\dfrac{\pi }{3} \right)}^{2}}+\dfrac{\left( -8\sqrt{3} \right)}{3!}{{\left( x-\dfrac{\pi }{3} \right)}^{3}}+\dfrac{80}{4!}{{\left( x-\dfrac{\pi }{3} \right)}^{4}}$
Simplifying the above equation, we get
$f\left( \log \left( \cos x \right) \right)=\log \left( \dfrac{1}{2} \right)-\sqrt{3}\left( x-\dfrac{\pi }{3} \right)-2{{\left( x-\dfrac{\pi }{3} \right)}^{2}}-\dfrac{4\sqrt{3}}{3}{{\left( x-\dfrac{\pi }{3} \right)}^{3}}+\dfrac{10}{3}{{\left( x-\dfrac{\pi }{3} \right)}^{4}}$
The above equation is the Taylor's series expansion up to the fourth degree term of the function $f\left( x \right)=\log \left( \cos x \right)$.
Note: In this type of question, it is necessary that we are familiar with the derivatives of standard functions. It is also important that we know the values of trigonometric functions for standard angles. This will make the calculations a little bit easier. It is useful to calculate every derivative separately so that we can avoid making errors in the calculations.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
What percentage of the solar systems mass is found class 8 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference Between Plant Cell and Animal Cell
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE