
Obtain all the zeroes of \[f(x) = {x^3} + 13{x^2} + 32x + 20\] if one of the zeroes is \[{\text{ - 2}}\] .
Answer
605.4k+ views
Hint – With the help of one of the root make the equation quadratic by taking the common $x + 2$ . Then solve the quadratic equation.
Given , \[f(x) = {x^3} + 13{x^2} + 32x + 20 = 0\,\,\,\,\,\,\,\,\,\,\,\,({\text{i}})\]
One of the root of the equation is \[{\text{ - 2}}\] (Given)
So , \[{\text{ }}f( - 2) = 0\]
Hence,
\[x + 2{\text{ }}\] is one of the factors of the equation .
So we can write \[f(x)\] as ,
\[f(x) = (x + 2)({x^2} + 11x + 10)\]
Then we can solve quadratic equation present above by splitting the middle term so,
\[
f(x) = (x + 2)({x^2} + x + 10x + 10) \\
f(x) = (x + 2)(x(x + 1) + 10(x + 1)) \\
f(x) = (x + 2)(x + 10)(x + 1) \\
\]
From (i) we get ,
\[(x + 2)(x + 10)(x + 1) = 0\]
So ,
\[x = - 2,x = - 10,x = - 1\]
Therefore the roots of \[x\] are \[{\text{ - 1, - 2, - 10}}\].
Note: – Whenever you cave been asked to find the roots of cubic equation, then try to get any one of the factor by hit and trial method or any other method , by the way here in this question one of the root is given, therefore we got one of the factor of the equation and then after taking the factor out, the equation will be quadratic, solve it then get two more roots. Number of roots of the equation will be equal to the power of the highest degree term present in the equation.
Given , \[f(x) = {x^3} + 13{x^2} + 32x + 20 = 0\,\,\,\,\,\,\,\,\,\,\,\,({\text{i}})\]
One of the root of the equation is \[{\text{ - 2}}\] (Given)
So , \[{\text{ }}f( - 2) = 0\]
Hence,
\[x + 2{\text{ }}\] is one of the factors of the equation .
So we can write \[f(x)\] as ,
\[f(x) = (x + 2)({x^2} + 11x + 10)\]
Then we can solve quadratic equation present above by splitting the middle term so,
\[
f(x) = (x + 2)({x^2} + x + 10x + 10) \\
f(x) = (x + 2)(x(x + 1) + 10(x + 1)) \\
f(x) = (x + 2)(x + 10)(x + 1) \\
\]
From (i) we get ,
\[(x + 2)(x + 10)(x + 1) = 0\]
So ,
\[x = - 2,x = - 10,x = - 1\]
Therefore the roots of \[x\] are \[{\text{ - 1, - 2, - 10}}\].
Note: – Whenever you cave been asked to find the roots of cubic equation, then try to get any one of the factor by hit and trial method or any other method , by the way here in this question one of the root is given, therefore we got one of the factor of the equation and then after taking the factor out, the equation will be quadratic, solve it then get two more roots. Number of roots of the equation will be equal to the power of the highest degree term present in the equation.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

