Answer
Verified
391.5k+ views
Hint: First we have to define what the terms we need to solve the problem are.
Since we are going to use the method of permutation to approach this problem which is $ {}^n{p_r} $ ; n is the objects and r is the arrangements ; since the Numbers less than \[10,000\] will at the most contain 4 digits (because in five digits are could not exceed at less than ten thousand) so there are four digits numbers and different digits from $ 0 $ to $ 9 $ is we are going to divide, without repetition.
Complete step by step answer:
(a) divisible by $ 5 $
First one digit number that divisible by five is one; (itself)
Now two digits number that divisible by five is seventeen because those having five in the unit place or zero in the unit place, similarly for the three-digit number we have one thirty-six;
Similarly for the four digits number we have $ 952 $ (four digits that divisible by the five)
Hence, we have total $ 1 + 17 + 136 + 952 = 1106 $ numbers that will divided by five
If the repetition is allowed then there are some changes in the values
First one digit number that divisible by five is one; (itself) Now two digits number that divisible by five is eighteen because those having five in the unit place (excluding zero), similarly for the three-digit number we have one eighty;
Similarly for the four digits number we have $ 1800 $ (four digits that divisible by the five)
Hence, we have total $ 1 + 18 + 180 + 1800 = 1999 $ numbers that will divide by five
(b) divisible by $ 25 $
since the repetition is need not be allowed and will need to divisible by twenty-five
For the first divide number we don’t have any number thus it is zero
for the second digit number we have $ 25,50,75 $ three number;
similarly for the three digits and four digits we count $ 22,154 $ respectively
Hence in total we have $ 0 + 22 + 154 = 179 $
now repetition is allowed and also need to divide by twenty-five;
One digit number is zero;
Two digits number are $ 25,50,75 $
similarly as above; three- and four-digits numbers are $ 36,360 $
Hence in total $ 0 + 3 + 36 + 360 = 399 $
Note: Since less than \[10,000\] means we only need to count up to $ 9999 $
Repetition means that the same number which placed first can be able to repeat again. Also no repetition means that one number cannot be applied twice.
Since we are going to use the method of permutation to approach this problem which is $ {}^n{p_r} $ ; n is the objects and r is the arrangements ; since the Numbers less than \[10,000\] will at the most contain 4 digits (because in five digits are could not exceed at less than ten thousand) so there are four digits numbers and different digits from $ 0 $ to $ 9 $ is we are going to divide, without repetition.
Complete step by step answer:
(a) divisible by $ 5 $
First one digit number that divisible by five is one; (itself)
Now two digits number that divisible by five is seventeen because those having five in the unit place or zero in the unit place, similarly for the three-digit number we have one thirty-six;
Similarly for the four digits number we have $ 952 $ (four digits that divisible by the five)
Hence, we have total $ 1 + 17 + 136 + 952 = 1106 $ numbers that will divided by five
If the repetition is allowed then there are some changes in the values
First one digit number that divisible by five is one; (itself) Now two digits number that divisible by five is eighteen because those having five in the unit place (excluding zero), similarly for the three-digit number we have one eighty;
Similarly for the four digits number we have $ 1800 $ (four digits that divisible by the five)
Hence, we have total $ 1 + 18 + 180 + 1800 = 1999 $ numbers that will divide by five
(b) divisible by $ 25 $
since the repetition is need not be allowed and will need to divisible by twenty-five
For the first divide number we don’t have any number thus it is zero
for the second digit number we have $ 25,50,75 $ three number;
similarly for the three digits and four digits we count $ 22,154 $ respectively
Hence in total we have $ 0 + 22 + 154 = 179 $
now repetition is allowed and also need to divide by twenty-five;
One digit number is zero;
Two digits number are $ 25,50,75 $
similarly as above; three- and four-digits numbers are $ 36,360 $
Hence in total $ 0 + 3 + 36 + 360 = 399 $
Note: Since less than \[10,000\] means we only need to count up to $ 9999 $
Repetition means that the same number which placed first can be able to repeat again. Also no repetition means that one number cannot be applied twice.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it