How many numbers are there between 1 and 1000 which when divided by 7 leave the remainder 4?
Answer
277.5k+ views
Hint: For solving this question you should know about the arithmetic progression A.P. and if we make the series for it then firstly we will find the first term and then we will find next same terms with a common difference of 7 because the question is asking for the same.
Complete step by step answer:
According to our question it is asked to calculate how many numbers there are between 1 and 1000 which when divided by 7 leave the remainder 4.
So, as we know that if any statement is given which shows about a type of a number, how it will be implemented, then we first make the first term which can be generated by the given information and then we find the next terms as a series wise or as an arithmetic progression wise.
So, according to the given statement in question we will evaluate that if we divide a number by 7 then it leaves a remainder 4.
So, we can write, if a number is divided by 7 and the remainder 4, then it must be in the form of \[7k+4\].
Let, \[{{T}_{k}}=7k+4\] from 1 to 1000
First term is ‘4’
And the common difference is ‘7’
And last term is \[\left( l \right)=998\]
\[\begin{align}
& \because l=a+\left( n-1 \right)d \\
& 998=4+\left( n-1 \right)7 \\
& 998=7n-3 \\
& 7n=1001 \\
& n=143 \\
\end{align}\]
So, the total terms are 143.
Note: While solving these types of problems you have to mind that you must make your first term with an exact remainder and common difference. And the term must be satisfied with the statement given in the question.
Complete step by step answer:
According to our question it is asked to calculate how many numbers there are between 1 and 1000 which when divided by 7 leave the remainder 4.
So, as we know that if any statement is given which shows about a type of a number, how it will be implemented, then we first make the first term which can be generated by the given information and then we find the next terms as a series wise or as an arithmetic progression wise.
So, according to the given statement in question we will evaluate that if we divide a number by 7 then it leaves a remainder 4.
So, we can write, if a number is divided by 7 and the remainder 4, then it must be in the form of \[7k+4\].
Let, \[{{T}_{k}}=7k+4\] from 1 to 1000
First term is ‘4’
And the common difference is ‘7’
And last term is \[\left( l \right)=998\]
\[\begin{align}
& \because l=a+\left( n-1 \right)d \\
& 998=4+\left( n-1 \right)7 \\
& 998=7n-3 \\
& 7n=1001 \\
& n=143 \\
\end{align}\]
So, the total terms are 143.
Note: While solving these types of problems you have to mind that you must make your first term with an exact remainder and common difference. And the term must be satisfied with the statement given in the question.
Recently Updated Pages
Which of the following would not be a valid reason class 11 biology CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Explain with the suitable examples the different types class 11 biology CBSE

How is pinnately compound leaf different from palmately class 11 biology CBSE

Match the following Column I Column I A Chlamydomonas class 11 biology CBSE

Trending doubts
Which country launched the first satellite in space class 11 physics CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE
