
Number of terms in the expansion of ${{\left( 1-x \right)}^{51}}{{\left( 1+x+{{x}^{2}} \right)}^{50}}$ is
a)50
b)51
c)100
d)102
Answer
591.6k+ views
Hint: Here, the expansion ${{\left( 1-x \right)}^{51}}{{\left( 1+x+{{x}^{2}} \right)}^{50}}$ is given and we have to find total number of terms after expanding. So, we will use the Binomial theorem that states the ${{n}^{th}}$ power of $\left( a+b \right)$ can be used as sum of $n+1$ terms, where $n>0$ .
Complete step-by-step answer:
Here, the expansion is given i.e. ${{\left( 1-x \right)}^{51}}{{\left( 1+x+{{x}^{2}} \right)}^{50}}$ and we will use Binomial theorem.
Using Binomial theorem, which is
$\begin{align}
& {{\left( a+b \right)}^{n}}={{a}^{n}}+\left( {}^{n}{{C}_{1}} \right){{a}^{n-1}}b+\left( {}^{n}{{C}_{1}} \right){{a}^{n-1}}b+\left( {}^{n}{{C}_{2}} \right){{a}^{n-2}}{{b}^{2}}+.......+\left( {}^{n}{{C}_{n-1}} \right)a{{b}^{n-1}}+{{b}^{n}} \\
& \\
\end{align}$ ………………(i)
On solving the given expression, we get
${{\left( 1-x \right)}^{51}}\cdot {{\left( +x+{{x}^{2}} \right)}^{50}}=\left( 1-x \right){{\left[ \left( 1-x \right)\left( 1+x+{{x}^{2}} \right) \right]}^{50}}$ …………………………………(ii)
Taking $\left( 1-x \right)$ term common to make power equal.
Now, on multiplying $\left( 1-x \right)\left( 1+x+{{x}^{2}} \right)$ we get,
$=1+x+{{x}^{2}}-x-{{x}^{2}}-{{x}^{3}}$
$=1-{{x}^{3}}$ ………………………….(iii)
Putting equation (iii) in (ii), we get
${{\left( 1-x \right)}^{51}}\cdot {{\left( +x+{{x}^{2}} \right)}^{50}}=\left( 1-x \right){{\left( 1-{{x}^{3}} \right)}^{50}}$ ………………………………………(iv)
Now using theorem on ${{\left( 1-{{x}^{3}} \right)}^{50}}$ where $a=1,b=\left( -{{x}^{3}} \right),n=50$
${{\left( 1-{{x}^{3}} \right)}^{50}}=1+\left( {}^{50}{{C}_{1}} \right){{\left( 1 \right)}^{49}}\left( -{{x}^{3}} \right)+\left( {}^{50}{{C}_{2}} \right){{\left( 1 \right)}^{48}}{{\left( -{{x}^{3}} \right)}^{2}}+.....+\left( {}^{50}{{C}_{49}} \right)\left( 1 \right){{\left( -{{x}^{3}} \right)}^{49}}+\left( {}^{50}{{C}_{50}} \right){{\left( -{{x}^{3}} \right)}^{50}}$
${{\left( 1-{{x}^{3}} \right)}^{50}}=1+\left( {}^{50}{{C}_{1}} \right)\left( -{{x}^{3}} \right)+\left( {}^{50}{{C}_{2}} \right){{\left( 1 \right)}^{48}}\left( {{x}^{6}} \right)+.....+\left( {}^{50}{{C}_{49}} \right)\left( 1 \right)\left( -{{x}^{147}} \right)+\left( {}^{50}{{C}_{50}} \right)\left( {{x}^{150}} \right)$ ….….(v)
Here considering ${}^{n}{{C}_{r}}$ term as ${{a}_{r}}$ and substituting this in equation (v), we get
${{\left( 1-{{x}^{3}} \right)}^{50}}=1+{{a}_{1}}\left( -{{x}^{3}} \right)+{{a}_{2}}{{\left( 1 \right)}^{48}}\left( {{x}^{6}} \right)+.....+{{a}_{49}}\left( 1 \right)\left( -{{x}^{147}} \right)+{{a}_{50}}\left( {{x}^{150}} \right)$
Now, putting the above expansion in equation (iv) and on solving we get,
$=\left( 1-x \right)\left[ 1-{{a}_{1}}{{x}^{3}}+{{a}_{2}}{{x}^{6}}+.....-{{a}_{49}}{{x}^{147}}+{{a}_{50}}{{x}^{150}} \right]$
Multiplying both the brackets, we get
$=\left( 1-{{a}_{1}}{{x}^{3}}+{{a}_{2}}{{x}^{6}}-{{a}_{3}}{{x}^{9}}.....{{a}_{50}}{{x}^{150}} \right)-\left( x-{{a}_{1}}{{x}^{4}}+{{a}_{2}}{{x}^{7}}-{{a}_{3}}{{x}^{10}}+....{{a}_{50}}{{x}^{151}} \right)$
$=1-x-{{a}_{1}}{{x}^{3}}+{{a}_{1}}{{x}^{4}}+{{a}_{2}}{{x}^{6}}+{{a}_{2}}{{x}^{7}}+....-{{a}_{50}}{{x}^{151}}$
So, in both the brackets there are 50 terms plus additional terms 1 and $\left( -x \right)$ in each bracket respectively.
So, total 51 terms are there in each bracket after expanding.
Total number of terms $=2\left( 51 \right)=102$
Hence, option (d) is correct.
Note: Students should be very careful while expanding the expression as there are chances of sign changing while multiplying the brackets. Also, the formula of the binomial theorem should be known properly.
Complete step-by-step answer:
Here, the expansion is given i.e. ${{\left( 1-x \right)}^{51}}{{\left( 1+x+{{x}^{2}} \right)}^{50}}$ and we will use Binomial theorem.
Using Binomial theorem, which is
$\begin{align}
& {{\left( a+b \right)}^{n}}={{a}^{n}}+\left( {}^{n}{{C}_{1}} \right){{a}^{n-1}}b+\left( {}^{n}{{C}_{1}} \right){{a}^{n-1}}b+\left( {}^{n}{{C}_{2}} \right){{a}^{n-2}}{{b}^{2}}+.......+\left( {}^{n}{{C}_{n-1}} \right)a{{b}^{n-1}}+{{b}^{n}} \\
& \\
\end{align}$ ………………(i)
On solving the given expression, we get
${{\left( 1-x \right)}^{51}}\cdot {{\left( +x+{{x}^{2}} \right)}^{50}}=\left( 1-x \right){{\left[ \left( 1-x \right)\left( 1+x+{{x}^{2}} \right) \right]}^{50}}$ …………………………………(ii)
Taking $\left( 1-x \right)$ term common to make power equal.
Now, on multiplying $\left( 1-x \right)\left( 1+x+{{x}^{2}} \right)$ we get,
$=1+x+{{x}^{2}}-x-{{x}^{2}}-{{x}^{3}}$
$=1-{{x}^{3}}$ ………………………….(iii)
Putting equation (iii) in (ii), we get
${{\left( 1-x \right)}^{51}}\cdot {{\left( +x+{{x}^{2}} \right)}^{50}}=\left( 1-x \right){{\left( 1-{{x}^{3}} \right)}^{50}}$ ………………………………………(iv)
Now using theorem on ${{\left( 1-{{x}^{3}} \right)}^{50}}$ where $a=1,b=\left( -{{x}^{3}} \right),n=50$
${{\left( 1-{{x}^{3}} \right)}^{50}}=1+\left( {}^{50}{{C}_{1}} \right){{\left( 1 \right)}^{49}}\left( -{{x}^{3}} \right)+\left( {}^{50}{{C}_{2}} \right){{\left( 1 \right)}^{48}}{{\left( -{{x}^{3}} \right)}^{2}}+.....+\left( {}^{50}{{C}_{49}} \right)\left( 1 \right){{\left( -{{x}^{3}} \right)}^{49}}+\left( {}^{50}{{C}_{50}} \right){{\left( -{{x}^{3}} \right)}^{50}}$
${{\left( 1-{{x}^{3}} \right)}^{50}}=1+\left( {}^{50}{{C}_{1}} \right)\left( -{{x}^{3}} \right)+\left( {}^{50}{{C}_{2}} \right){{\left( 1 \right)}^{48}}\left( {{x}^{6}} \right)+.....+\left( {}^{50}{{C}_{49}} \right)\left( 1 \right)\left( -{{x}^{147}} \right)+\left( {}^{50}{{C}_{50}} \right)\left( {{x}^{150}} \right)$ ….….(v)
Here considering ${}^{n}{{C}_{r}}$ term as ${{a}_{r}}$ and substituting this in equation (v), we get
${{\left( 1-{{x}^{3}} \right)}^{50}}=1+{{a}_{1}}\left( -{{x}^{3}} \right)+{{a}_{2}}{{\left( 1 \right)}^{48}}\left( {{x}^{6}} \right)+.....+{{a}_{49}}\left( 1 \right)\left( -{{x}^{147}} \right)+{{a}_{50}}\left( {{x}^{150}} \right)$
Now, putting the above expansion in equation (iv) and on solving we get,
$=\left( 1-x \right)\left[ 1-{{a}_{1}}{{x}^{3}}+{{a}_{2}}{{x}^{6}}+.....-{{a}_{49}}{{x}^{147}}+{{a}_{50}}{{x}^{150}} \right]$
Multiplying both the brackets, we get
$=\left( 1-{{a}_{1}}{{x}^{3}}+{{a}_{2}}{{x}^{6}}-{{a}_{3}}{{x}^{9}}.....{{a}_{50}}{{x}^{150}} \right)-\left( x-{{a}_{1}}{{x}^{4}}+{{a}_{2}}{{x}^{7}}-{{a}_{3}}{{x}^{10}}+....{{a}_{50}}{{x}^{151}} \right)$
$=1-x-{{a}_{1}}{{x}^{3}}+{{a}_{1}}{{x}^{4}}+{{a}_{2}}{{x}^{6}}+{{a}_{2}}{{x}^{7}}+....-{{a}_{50}}{{x}^{151}}$
So, in both the brackets there are 50 terms plus additional terms 1 and $\left( -x \right)$ in each bracket respectively.
So, total 51 terms are there in each bracket after expanding.
Total number of terms $=2\left( 51 \right)=102$
Hence, option (d) is correct.
Note: Students should be very careful while expanding the expression as there are chances of sign changing while multiplying the brackets. Also, the formula of the binomial theorem should be known properly.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

