
Number of solutions of equation $\sin 9\theta =\sin \theta $ in the interval $\left[ 0,2\pi \right]$ is?
Answer
507.6k+ views
Hint: In the given question, we are given an equation in which we need to find the number of solutions. So, as we need to find the number of solutions, it is clear that the given equation has more than one solution. We will make use of some trigonometric identities in order to solve it.
Complete step by step answer:
According to the question, we are given an equation $\sin 9\theta =\sin \theta $and also given that $\theta $ lies in the interval $\left[ 0,2\pi \right]$. Therefore, it is clear that the solution would lie in the interval $\left[ 0,2\pi \right]$.
Now, let us consider the equation $\sin 9\theta =\sin \theta $ as below:
$\begin{align}
& \sin 9\theta =\sin \theta \\
& \Rightarrow \sin 9\theta -\sin \theta =0 \\
\end{align}$
Now, making use of the trigonometric identity which is $\sin C-\sin D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)$
Now, our expression on left-hand side would be
$\begin{align}
& \sin 9\theta -\sin \theta =2\cos \left( \dfrac{9\theta +\theta }{2} \right)\sin \left( \dfrac{9\theta -\theta }{2} \right) \\
& \Rightarrow 2\cos 5\theta \sin 4\theta \\
\end{align}$
Now, we need to equate the left-hand side of the expression to 0.
Now, here $\cos 5\theta =0$ and $\sin 4\theta =0$ .
Now,
$\begin{align}
& \Rightarrow \cos 5\theta =0 \\
& \therefore 5\theta =\left( 2n+1 \right)\dfrac{\pi }{2} \\
& \Rightarrow \theta =\left( 2n+1 \right)\dfrac{\pi }{10} \\
\end{align}$
Now, taking n=0,1,2,3, … and now we need to substitute the values of n such that it doesn’t cross the interval.
Therefore, the values of $\theta $ are:
$\Rightarrow \dfrac{\pi }{10},\dfrac{3\pi }{10},\dfrac{5\pi }{10},\dfrac{7\pi }{10},\dfrac{9\pi }{10},\dfrac{11\pi }{10},\dfrac{13\pi }{10},\dfrac{15\pi }{10},\dfrac{17\pi }{10},\dfrac{19\pi }{10}$
So, here we get 10 values of theta.
Now,
$\begin{align}
& \Rightarrow \sin 4\theta =0 \\
& \therefore 4\theta =n\pi \\
& \Rightarrow \theta =\dfrac{n\pi }{4} \\
\end{align}$
Now, we can take all values of theta such that it does not cross the interval.
Therefore, the values of $\theta $ are:
$\Rightarrow \dfrac{\pi }{4},\dfrac{2\pi }{4},\dfrac{3\pi }{4},\dfrac{4\pi }{4},\dfrac{5\pi }{4},\dfrac{6\pi }{4},\dfrac{7\pi }{4},\dfrac{8\pi }{4}$
Therefore, by this there are 8 values of theta.
Therefore, total solutions of the given equation are 18.
Note: Now, the most important thing that we need to keep in mind is that we take the appropriate values of n and remember to check that theta taken is from the given interval or not. Sometimes, we forget to check the interval and randomly try to check the solution for every value of n.
Complete step by step answer:
According to the question, we are given an equation $\sin 9\theta =\sin \theta $and also given that $\theta $ lies in the interval $\left[ 0,2\pi \right]$. Therefore, it is clear that the solution would lie in the interval $\left[ 0,2\pi \right]$.
Now, let us consider the equation $\sin 9\theta =\sin \theta $ as below:
$\begin{align}
& \sin 9\theta =\sin \theta \\
& \Rightarrow \sin 9\theta -\sin \theta =0 \\
\end{align}$
Now, making use of the trigonometric identity which is $\sin C-\sin D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)$
Now, our expression on left-hand side would be
$\begin{align}
& \sin 9\theta -\sin \theta =2\cos \left( \dfrac{9\theta +\theta }{2} \right)\sin \left( \dfrac{9\theta -\theta }{2} \right) \\
& \Rightarrow 2\cos 5\theta \sin 4\theta \\
\end{align}$
Now, we need to equate the left-hand side of the expression to 0.
Now, here $\cos 5\theta =0$ and $\sin 4\theta =0$ .
Now,
$\begin{align}
& \Rightarrow \cos 5\theta =0 \\
& \therefore 5\theta =\left( 2n+1 \right)\dfrac{\pi }{2} \\
& \Rightarrow \theta =\left( 2n+1 \right)\dfrac{\pi }{10} \\
\end{align}$
Now, taking n=0,1,2,3, … and now we need to substitute the values of n such that it doesn’t cross the interval.
Therefore, the values of $\theta $ are:
$\Rightarrow \dfrac{\pi }{10},\dfrac{3\pi }{10},\dfrac{5\pi }{10},\dfrac{7\pi }{10},\dfrac{9\pi }{10},\dfrac{11\pi }{10},\dfrac{13\pi }{10},\dfrac{15\pi }{10},\dfrac{17\pi }{10},\dfrac{19\pi }{10}$
So, here we get 10 values of theta.
Now,
$\begin{align}
& \Rightarrow \sin 4\theta =0 \\
& \therefore 4\theta =n\pi \\
& \Rightarrow \theta =\dfrac{n\pi }{4} \\
\end{align}$
Now, we can take all values of theta such that it does not cross the interval.
Therefore, the values of $\theta $ are:
$\Rightarrow \dfrac{\pi }{4},\dfrac{2\pi }{4},\dfrac{3\pi }{4},\dfrac{4\pi }{4},\dfrac{5\pi }{4},\dfrac{6\pi }{4},\dfrac{7\pi }{4},\dfrac{8\pi }{4}$
Therefore, by this there are 8 values of theta.
Therefore, total solutions of the given equation are 18.
Note: Now, the most important thing that we need to keep in mind is that we take the appropriate values of n and remember to check that theta taken is from the given interval or not. Sometimes, we forget to check the interval and randomly try to check the solution for every value of n.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

