Nitrogen is a relatively inactive element because?
Answer
281.1k+ views
Hint: Nitrogen is the first element of the group 15 of the periodic table. It has an atomic number of 7, which is equal to its number of protons and electrons. Nitrogen contains 5 electrons in its outer shell, and 3 electrons in the p orbital. Nitrogen in its diatomic form is capable of forming triple bonds with nitrogen.
Complete answer:
Nitrogen is the 7th element of the periodic table from group 15 and period 2. It has an electronic configuration $[He]2{{s}^{2}}2{{p}^{3}}$. Nitrogen has a small size relative to other elements of the same group; this enables nitrogen to form $p\pi $-$p\pi $ multiple bonding. This type of multiple bonding in nitrogen results in a triple bond in its diatomic molecule that is nitrogen exists as$N\equiv N$ in diatomic gas form.
The reactivity of any element depends on the ability to dissociate and form compounds with other atoms. Nitrogen in its diatomic form has a very high bond dissociation enthalpy that is about 941.4 kJ/mol. This is due to the presence of $p\pi $-$p\pi $ multiple bonding in nitrogen. As the energy is very high to break the molecule of nitrogen, this results in its un-reactive nature.
Hence, nitrogen is relatively an unreactive element due to the high bond dissociation energy of its $N\equiv N$ triple bond.
Note:
The higher elements from the same group 15 of nitrogen do not form $p\pi $-$p\pi $ multiple bonding. This is because in them there is the presence of higher atomic orbitals like 3p and 4p that are large and diffused, so these orbitals do not result in effective overlapping, therefore they do not form compounds with triple bonds like nitrogen.
Complete answer:
Nitrogen is the 7th element of the periodic table from group 15 and period 2. It has an electronic configuration $[He]2{{s}^{2}}2{{p}^{3}}$. Nitrogen has a small size relative to other elements of the same group; this enables nitrogen to form $p\pi $-$p\pi $ multiple bonding. This type of multiple bonding in nitrogen results in a triple bond in its diatomic molecule that is nitrogen exists as$N\equiv N$ in diatomic gas form.
The reactivity of any element depends on the ability to dissociate and form compounds with other atoms. Nitrogen in its diatomic form has a very high bond dissociation enthalpy that is about 941.4 kJ/mol. This is due to the presence of $p\pi $-$p\pi $ multiple bonding in nitrogen. As the energy is very high to break the molecule of nitrogen, this results in its un-reactive nature.
Hence, nitrogen is relatively an unreactive element due to the high bond dissociation energy of its $N\equiv N$ triple bond.
Note:
The higher elements from the same group 15 of nitrogen do not form $p\pi $-$p\pi $ multiple bonding. This is because in them there is the presence of higher atomic orbitals like 3p and 4p that are large and diffused, so these orbitals do not result in effective overlapping, therefore they do not form compounds with triple bonds like nitrogen.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Which of the following would not be a valid reason class 11 biology CBSE

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What is meant by monosporic development of female class 11 biology CBSE

Draw labelled diagram of the following i Gram seed class 11 biology CBSE

Trending doubts
Change the following sentences into negative and interrogative class 10 english CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is 1 divided by 0 class 8 maths CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Convert compound sentence to simple sentence He is class 10 english CBSE

India lies between latitudes and longitudes class 12 social science CBSE

Why are rivers important for the countrys economy class 12 social science CBSE

Distinguish between Khadar and Bhangar class 9 social science CBSE
