
What is the $[N{{H}_{4}}^{+}]$ in a solution containing 0.02 M $N{{H}_{3}}$(${{K}_{b}}$ = 1.8 x ${{10}^{-5}}$) and 0.01 M KOH?
(A) 1.8 x ${{10}^{-5}}$
(B) 9 x ${{10}^{-6}}$
(C) 3.6 x ${{10}^{-5}}$
(D) NONE OF THE ABOVE
Answer
554.7k+ views
Hint: $N{{H}_{4}}^{+}$ ions are generated by the reaction between ammonia and hydroxide ions. The equilibrium constant for this reaction is given in the question. Write the equilibrium constant in terms of concentration of reactants and products and equate it to the value provided. With this you will arrive at the concentration of $N{{H}_{4}}^{+}$ ions.
Complete Solution :
We will write the dissociation reaction of KOH and the reaction between ammonia and hydroxide ions. This is because these are the two main reactions involved in determining the ammonium ions concentration.
Dissociation of potassium hydroxide:
$KOH\,\to \,\,{{K}^{+}}\,+\,O{{H}^{-}}$
Reaction of ammonia with hydroxide ions:
$N{{H}_{4}}OH\,\to \,\,N{{H}_{4}}^{+}\,+\,O{{H}^{-}}$
- The equilibrium constant for the above reaction is given as 1.8 x ${{10}^{-5}}$.
The concentration of hydroxide ions will be same as the original concentration of potassium hydroxide i.e. 0.01 M.
- We will now write the equilibrium concentration in terms of concentration of products and reactants and equate it to the value provided to us.
${{K}_{b}}\,=\,\dfrac{[N{{H}_{4}}^{+}]{{[O{{H}^{-}}]}^{2}}}{[N{{H}_{4}}OH]}$
${{K}_{b}}\,=\,\dfrac{[N{{H}_{4}}^{+}]{{[{{10}^{-1}}]}^{2}}}{[2\,\text{x }{{10}^{-2}}]}$
$[N{{H}_{4}}^{+}]$ = 3.6 x ${{10}^{-5}}$.
Thus, upon calculation we find that the concentration of ammonium ions in the aqueous solution is 3.6 x ${{10}^{-5}}$.
So, the correct answer is “Option C”.
Note: It is important to consider the stoichiometric coefficient of products and reactants while substituting the values in the formula for equilibrium constant. This is because the concentration is raised to the power of stoichiometric coefficient before substituting it in the formula.
Complete Solution :
We will write the dissociation reaction of KOH and the reaction between ammonia and hydroxide ions. This is because these are the two main reactions involved in determining the ammonium ions concentration.
Dissociation of potassium hydroxide:
$KOH\,\to \,\,{{K}^{+}}\,+\,O{{H}^{-}}$
Reaction of ammonia with hydroxide ions:
$N{{H}_{4}}OH\,\to \,\,N{{H}_{4}}^{+}\,+\,O{{H}^{-}}$
- The equilibrium constant for the above reaction is given as 1.8 x ${{10}^{-5}}$.
The concentration of hydroxide ions will be same as the original concentration of potassium hydroxide i.e. 0.01 M.
- We will now write the equilibrium concentration in terms of concentration of products and reactants and equate it to the value provided to us.
${{K}_{b}}\,=\,\dfrac{[N{{H}_{4}}^{+}]{{[O{{H}^{-}}]}^{2}}}{[N{{H}_{4}}OH]}$
${{K}_{b}}\,=\,\dfrac{[N{{H}_{4}}^{+}]{{[{{10}^{-1}}]}^{2}}}{[2\,\text{x }{{10}^{-2}}]}$
$[N{{H}_{4}}^{+}]$ = 3.6 x ${{10}^{-5}}$.
Thus, upon calculation we find that the concentration of ammonium ions in the aqueous solution is 3.6 x ${{10}^{-5}}$.
So, the correct answer is “Option C”.
Note: It is important to consider the stoichiometric coefficient of products and reactants while substituting the values in the formula for equilibrium constant. This is because the concentration is raised to the power of stoichiometric coefficient before substituting it in the formula.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

