
$\text{N}{{\text{H}}_{3}}$is oxidised to NO by ${{\text{O}}_{2}}$ in basic medium. Number of equivalents of $\text{N}{{\text{H}}_{3}}$oxidised by 1 mole of ${{\text{O}}_{2}}$ is:
A. 4
B. 5
C. 6
D. 7
Answer
592.2k+ views
Hint: Oxidised reagents are those reagents which itself gets reduced but oxidises the other molecule. Whereas reducing agents are those reagents which itself gets oxidised but reduces the other molecule.
Complete step by step answer:
- Firstly, we have to write the equation between ammonia and oxygen in which the ammonia will reduce into nitrogen oxide:
$\text{4N}{{\text{H}}_{3}}\text{ + 5}{{\text{O}}_{2}}\text{ }\to \text{ 4NO + 6}{{\text{H}}_{2}}\text{O}$
- As we can see that the oxidation state of nitrogen changes from -3 to +2 so it undergoes oxidation reaction.
- But there are a total of 4 moles of ammonia and nitrogen oxide so the difference between the oxidation state of both is:
$\begin{align}& \left( 3\text{ }\cdot \text{ 4} \right)\text{ - }\left( \text{2 }\cdot \text{ 4} \right)\text{ = 12 - 8} \\ & \text{= 4} \\ \end{align}$
- So, the n-factor is 4.
- Now, we have to calculate the number of equivalents of ammonia so let's understand the definition of it i.e.
The number of equivalents is an amount of the electron or ions that can be transferred in a chemical reaction.
- So, here a total of 4 electrons are transferred from the reactant side to the product side.
Therefore, option A. is the correct answer.
Note: The formula to find equivalent mass is the ratio of the molar mass of the substance and acidity or basicity of n-factor. The single elements have an oxidation state of zero according to the rules to calculate the oxidation state.
Complete step by step answer:
- Firstly, we have to write the equation between ammonia and oxygen in which the ammonia will reduce into nitrogen oxide:
$\text{4N}{{\text{H}}_{3}}\text{ + 5}{{\text{O}}_{2}}\text{ }\to \text{ 4NO + 6}{{\text{H}}_{2}}\text{O}$
- As we can see that the oxidation state of nitrogen changes from -3 to +2 so it undergoes oxidation reaction.
- But there are a total of 4 moles of ammonia and nitrogen oxide so the difference between the oxidation state of both is:
$\begin{align}& \left( 3\text{ }\cdot \text{ 4} \right)\text{ - }\left( \text{2 }\cdot \text{ 4} \right)\text{ = 12 - 8} \\ & \text{= 4} \\ \end{align}$
- So, the n-factor is 4.
- Now, we have to calculate the number of equivalents of ammonia so let's understand the definition of it i.e.
The number of equivalents is an amount of the electron or ions that can be transferred in a chemical reaction.
- So, here a total of 4 electrons are transferred from the reactant side to the product side.
Therefore, option A. is the correct answer.
Note: The formula to find equivalent mass is the ratio of the molar mass of the substance and acidity or basicity of n-factor. The single elements have an oxidation state of zero according to the rules to calculate the oxidation state.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

