
When the momentum of a body increases by 100%, its K.E. increases by:
A. 20%
B. 40%
C. 100%
D. 300%
Answer
508.8k+ views
Hint:To answer the above question, we need to understand the formulas of kinetic energy and momentum and find a relation between both these quantities. Kinetic energy in the energy acquired by a body due to its motion, while momentum is the product of mass and velocity of a body.
Complete step by step answer:
Kinetic energy is the type of energy that an item or particle has as a result of its movement. When work is done on an object by exerting a net force, the object accelerates and gains kinetic energy as a result. Kinetic energy is a property of a moving item or particle that is determined by its mass as well as its motion. The formula for K.E. is as follows:
$KE = \dfrac{1}{2}m{v^2}$
Here $m$= mass of the body and $v$= velocity of the body.
The product of a particle's mass and velocity is called momentum. Momentum is a vector quantity in the sense that it has both a magnitude and a direction. The time rate of change in momentum is equal to the force applied on the particle, according to Isaac Newton's second law of motion. The formula for momentum ($p$) is:
\[p = mv\]
Comparing both equations, we get
$KE = \dfrac{{{p^2}}}{{2m}}$
When momentum is increased by 100%, new kinetic energy $(KE')$ becomes:
$KE' = \dfrac{{{{(2p)}^2}}}{{2m}} \\
\Rightarrow KE'= \dfrac{{4{p^2}}}{{2m}}$
So, percentage increase in KE is,
$\dfrac{{KE' - KE}}{{KE}}\times 100 = \dfrac{{\dfrac{{4{p^2} - {p^2}}}{{2m}}}}{{\dfrac{{{p^2}}}{{2m}}}}\times 100 \\
\therefore \dfrac{{KE' - KE}}{{KE}}\times 100 = 300\% $
Hence,the correct answer is option D.
Note: If a constant force applies on a particle for a particular time, the product of force and time interval (the impulse) equals the change in momentum, according to Newton's second law. The momentum of a particle, on the other hand, is a measure of the time it takes for a constant force to bring it to a stop.
Complete step by step answer:
Kinetic energy is the type of energy that an item or particle has as a result of its movement. When work is done on an object by exerting a net force, the object accelerates and gains kinetic energy as a result. Kinetic energy is a property of a moving item or particle that is determined by its mass as well as its motion. The formula for K.E. is as follows:
$KE = \dfrac{1}{2}m{v^2}$
Here $m$= mass of the body and $v$= velocity of the body.
The product of a particle's mass and velocity is called momentum. Momentum is a vector quantity in the sense that it has both a magnitude and a direction. The time rate of change in momentum is equal to the force applied on the particle, according to Isaac Newton's second law of motion. The formula for momentum ($p$) is:
\[p = mv\]
Comparing both equations, we get
$KE = \dfrac{{{p^2}}}{{2m}}$
When momentum is increased by 100%, new kinetic energy $(KE')$ becomes:
$KE' = \dfrac{{{{(2p)}^2}}}{{2m}} \\
\Rightarrow KE'= \dfrac{{4{p^2}}}{{2m}}$
So, percentage increase in KE is,
$\dfrac{{KE' - KE}}{{KE}}\times 100 = \dfrac{{\dfrac{{4{p^2} - {p^2}}}{{2m}}}}{{\dfrac{{{p^2}}}{{2m}}}}\times 100 \\
\therefore \dfrac{{KE' - KE}}{{KE}}\times 100 = 300\% $
Hence,the correct answer is option D.
Note: If a constant force applies on a particle for a particular time, the product of force and time interval (the impulse) equals the change in momentum, according to Newton's second law. The momentum of a particle, on the other hand, is a measure of the time it takes for a constant force to bring it to a stop.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

