Answer
Verified
418.8k+ views
Hint As we know that hybridization is the process of producing a degenerated type of orbital by mixing two atomic orbitals with the same energy levels. During hybridization, atomic orbitals are mixed and a new hybrid orbital is formed.
Complete Step by step solution:
- In $Ni{{\left( CO \right)}_{4}}$, Ni atom is $s{{p}^{3}}$ hybridised. And this will lead to a tetrahedral geometry. We can see the structure:
- In $Ni\left( CN \right)_{4}^{2-}$, Ni atom is $ds{{p}^{2}}$ hybridised. And this will lead to a square planar geometry.
Here, $Ni\left( CN \right)_{4}^{2-}$ is showing $ds{{p}^{2}}$ hybridisation, because here CN group is a strong field ligand and it forms inner complexes. We can see the structure:
- In $Fe\left( CN \right)_{6}^{4-}$, Ni atom is ${{d}^{2}}s{{p}^{3}}$ hybridised. And this will lead to an octahedral geometry. Here, $Fe\left( CN \right)_{6}^{4-}$ is showing ${{d}^{2}}s{{p}^{3}}$ hybridisation, because here cyanide group is present. And as we know that cyanide group is a strong field ligand and it forms inner complexes. We can see the structure:
- In $MnF_{6}^{4-}$, Ni atom is $s{{p}^{3}}{{d}^{2}}$ hybridised. And this will lead to an octahedral geometry. We can see the structure:
Hence, we can say that correct option is (d), that is A-1, B-2, C-4, D-3
Note:
- We must note the key features of hybridization: the atomic orbitals that have equal energies undergo hybridization. Shape of any molecule can be predicted from hybridization.
- The number of hybrid orbitals that are formed during hybridization will be equal to the number of atomic orbitals mixed.
Complete Step by step solution:
- In $Ni{{\left( CO \right)}_{4}}$, Ni atom is $s{{p}^{3}}$ hybridised. And this will lead to a tetrahedral geometry. We can see the structure:
- In $Ni\left( CN \right)_{4}^{2-}$, Ni atom is $ds{{p}^{2}}$ hybridised. And this will lead to a square planar geometry.
Here, $Ni\left( CN \right)_{4}^{2-}$ is showing $ds{{p}^{2}}$ hybridisation, because here CN group is a strong field ligand and it forms inner complexes. We can see the structure:
- In $Fe\left( CN \right)_{6}^{4-}$, Ni atom is ${{d}^{2}}s{{p}^{3}}$ hybridised. And this will lead to an octahedral geometry. Here, $Fe\left( CN \right)_{6}^{4-}$ is showing ${{d}^{2}}s{{p}^{3}}$ hybridisation, because here cyanide group is present. And as we know that cyanide group is a strong field ligand and it forms inner complexes. We can see the structure:
- In $MnF_{6}^{4-}$, Ni atom is $s{{p}^{3}}{{d}^{2}}$ hybridised. And this will lead to an octahedral geometry. We can see the structure:
Hence, we can say that correct option is (d), that is A-1, B-2, C-4, D-3
Note:
- We must note the key features of hybridization: the atomic orbitals that have equal energies undergo hybridization. Shape of any molecule can be predicted from hybridization.
- The number of hybrid orbitals that are formed during hybridization will be equal to the number of atomic orbitals mixed.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE