
Mapping $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ which is defined as $\mathrm{f}(\mathrm{x})=\cos \mathrm{x}, \mathrm{x} \in \mathrm{R}$ will be
A.Neither one-one nor onto
B.One-One
C.Onto
D.One-One onto
Answer
547.8k+ views
Hint: In mathematics, a map is often used as a synonym for a function, but may also refer to some generalizations. Originally, this was an abbreviation of mapping, which often refers to the action of applying a function to the elements of its domain. A function is a special type of relation in which each element of the domain is paired with exactly one element in the range. A mapping shows how the elements are paired. It’s like a flow chart for a function, showing the input and output values. Maps present information about the world in a simple, visual way. They teach about the world by showing sizes and shapes of countries, locations of features, and distances between places. Maps can show distributions of things over Earth, such as settlement patterns.
Complete step-by-step answer:
We have $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}, \mathrm{f}(\mathrm{x})=\cos \mathrm{x}$
Let $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$
$\Rightarrow \cos x_{1}=\cos x_{2}$
$\Rightarrow \mathrm{x}_{1}=2 \mathrm{n} \pi \pm \mathrm{x}_{2}, \mathrm{n} \in \mathrm{Z}$
For example, when we use the function notation $f: R \rightarrow R,$ we mean that $f$ is a function from the real numbers to the real numbers. In other words, the domain of $\mathrm{f}$ is the set of real number $\mathrm{R}$ (and its set of possible outputs or codomain is also the set of real numbers $\mathbf{R}$ ).
Above equation has infinite solutions for $\mathrm{x}_{1}$ and $\mathrm{x}_{2}$.
Thus $\mathrm{f}(\mathrm{x})$ is many one function
Also the range of $\cos \mathrm{x}$ is [-1,1], which is a subset that is given a co-domain $\mathrm{R}$.
Hence function is not onto.
Hence, the correct answer is Option A.
Note: An example of mapping is creating a map to get to your house. An example of mapping is identifying which cell on one spreadsheet contains the same information as the cell on another spreadsheet. (mathematics) A function that maps every element of a given set to a unique element of another set; a correspondence. "Map" is a more general term than "translate", "rotate", etc.; it just means "transform every item in the domain" (and "domain" means "group of things we are transforming"). So, the "mapping notation" we have mentioned, like $(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}+1, \mathrm{y}+1),$ is a way we can express any kind of transformation in the geometric plane.
Complete step-by-step answer:
We have $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}, \mathrm{f}(\mathrm{x})=\cos \mathrm{x}$
Let $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$
$\Rightarrow \cos x_{1}=\cos x_{2}$
$\Rightarrow \mathrm{x}_{1}=2 \mathrm{n} \pi \pm \mathrm{x}_{2}, \mathrm{n} \in \mathrm{Z}$
For example, when we use the function notation $f: R \rightarrow R,$ we mean that $f$ is a function from the real numbers to the real numbers. In other words, the domain of $\mathrm{f}$ is the set of real number $\mathrm{R}$ (and its set of possible outputs or codomain is also the set of real numbers $\mathbf{R}$ ).
Above equation has infinite solutions for $\mathrm{x}_{1}$ and $\mathrm{x}_{2}$.
Thus $\mathrm{f}(\mathrm{x})$ is many one function
Also the range of $\cos \mathrm{x}$ is [-1,1], which is a subset that is given a co-domain $\mathrm{R}$.
Hence function is not onto.
Hence, the correct answer is Option A.
Note: An example of mapping is creating a map to get to your house. An example of mapping is identifying which cell on one spreadsheet contains the same information as the cell on another spreadsheet. (mathematics) A function that maps every element of a given set to a unique element of another set; a correspondence. "Map" is a more general term than "translate", "rotate", etc.; it just means "transform every item in the domain" (and "domain" means "group of things we are transforming"). So, the "mapping notation" we have mentioned, like $(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}+1, \mathrm{y}+1),$ is a way we can express any kind of transformation in the geometric plane.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

