
Locate the points representing the complex number ‘z’ for which $\arg \left( \dfrac{z-1-i}{z-2} \right)=\dfrac{\pi }{3}$.
Answer
602.7k+ views
Hint: Put ‘z = x+iy’, and now simplify the given expression, $\left( \dfrac{z-1-i}{z-2} \right)$ and convert it to standard form of complex number i.e., ‘a+ib’. Now, use the formula of argument i.e., ${{\tan }^{-1}}\left( \dfrac{b}{a} \right)$ for complex number, ‘a+ib’, to get locus of z.
Complete step-by-step answer:
Let us suppose ‘z = x+iy’ in the given expression.
$\arg \left( \dfrac{z-1-i}{z-2} \right)=\dfrac{\pi }{3}..................\left( i \right)$
Put ‘z = (x+iy)’, we get
$\Rightarrow$ $\arg \left( \dfrac{x+iy-1-i}{x+iy-2} \right)=\dfrac{\pi }{3}$
Now, let us convert the above complex number to ‘a+ib’ by multiplying the conjugate of the denominator. Hence, we get
$\Rightarrow$ $\arg \left( \dfrac{\left( x-1 \right)+i\left( y-1 \right)}{\left( x-2 \right)+iy}\times \dfrac{\left( x-2 \right)-iy}{\left( x-2 \right)-iy} \right)=\dfrac{\pi }{3}$
$\Rightarrow$ $\arg \left( \dfrac{\left( \left( x-1 \right)+i\left( y-1 \right) \right)\times \left( \left( x-2 \right)-iy \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}} \right)=\dfrac{\pi }{3}$
$\Rightarrow$ $\arg \left( \dfrac{\left( x-1 \right)\left( x-2 \right)+y\left( y-1 \right)+i\left( y-1 \right)\left( x-2 \right)-iy\left( x-1 \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}} \right)=\dfrac{\pi }{3}$
Opening the brackets, we get
$\Rightarrow$ $\arg \left( \dfrac{\left( {{x}^{2}}-3x+2+{{y}^{2}}-y \right)+i\left( xy-2y-x+2-xy+y \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}} \right)=\dfrac{\pi }{3}$
$\Rightarrow$ $\arg \left( \dfrac{\left( {{x}^{2}}+{{y}^{2}}-3x-y+2 \right)+i\left( -x-y+2 \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}} \right)=\dfrac{\pi }{3}$
$\Rightarrow$ $\arg \left( \dfrac{\left( {{x}^{2}}+{{y}^{2}}-3x-y+2 \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}}+i\dfrac{\left( -x-y+2 \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}} \right)=\dfrac{\pi }{3}$……………….(ii)
Now, we know that argument of any complex number ‘a+ib’ is given by the relation
$\arg \left( a+ib \right)={{\tan }^{-1}}\left( \dfrac{b}{a} \right)..............\left( iii \right)$
Hence, using equation (iii), we can get argument of equation (ii) as
$\Rightarrow$ ${{\tan }^{-1}}\left( \dfrac{\dfrac{-x-y+2}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}}}{\dfrac{{{x}^{2}}+{{y}^{2}}-3x-y+2}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}}} \right)=\dfrac{\pi }{3}$
Cancelling the like terms and transferring ${{\tan }^{-1}}$ function to other side, hence we get
$\Rightarrow$ $\dfrac{-x-y+2}{{{x}^{2}}+{{y}^{2}}-3x-y+2}=\tan \dfrac{\pi }{3}$
Substituting the value of right hand side, we get
$\Rightarrow$ $\dfrac{-x-y+2}{{{x}^{2}}+{{y}^{2}}-3x-y+2}=\sqrt{3}$
Now, on cross multiplying above relation, we get an equation as
$\Rightarrow$ $\dfrac{-x-y+2}{\sqrt{3}}={{x}^{2}}+{{y}^{2}}-3x-y+2$
${{x}^{2}}+{{y}^{2}}-3x-y+2=\dfrac{-x}{\sqrt{3}}-\dfrac{y}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}$
${{x}^{2}}+{{y}^{2}}+x\left( \dfrac{1}{\sqrt{3}}-3 \right)+y\left( \dfrac{1}{\sqrt{3}}-1 \right)+2-\dfrac{2}{\sqrt{3}}=0...........\left( iv \right)$
Now, on comparing the above equation with the standard equation of circle, i.e.,
${{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0$
We can observe that equation (iv) is representing an equation of circle, where
$2g=\left( \dfrac{1}{\sqrt{3}}-3 \right),2f=\left( \dfrac{1}{\sqrt{3}}-1 \right),c=2-\dfrac{2}{\sqrt{3}}$
Hence, the locus of point ‘z’ by the given relation $\arg \left( \dfrac{z-1-i}{z-2} \right)=\dfrac{\pi }{3}$ is a circle.
Note: One can prove the locus of the points of ‘z’ from a given equation by using the property of a circle that is angle formed by a chord in the same segment will represent a circle. But this will be a lengthy process.
Hence, given relation can be generalize such that equation
$\arg \left( \dfrac{z-1-i}{z-2} \right)=\theta \left( \theta \ne \pi \right)$or$\left( \theta \ne 0 \right)$
Will always represent a circle where $\theta $ is less than ${{180}^{\circ }}$ .
Complete step-by-step answer:
Let us suppose ‘z = x+iy’ in the given expression.
$\arg \left( \dfrac{z-1-i}{z-2} \right)=\dfrac{\pi }{3}..................\left( i \right)$
Put ‘z = (x+iy)’, we get
$\Rightarrow$ $\arg \left( \dfrac{x+iy-1-i}{x+iy-2} \right)=\dfrac{\pi }{3}$
Now, let us convert the above complex number to ‘a+ib’ by multiplying the conjugate of the denominator. Hence, we get
$\Rightarrow$ $\arg \left( \dfrac{\left( x-1 \right)+i\left( y-1 \right)}{\left( x-2 \right)+iy}\times \dfrac{\left( x-2 \right)-iy}{\left( x-2 \right)-iy} \right)=\dfrac{\pi }{3}$
$\Rightarrow$ $\arg \left( \dfrac{\left( \left( x-1 \right)+i\left( y-1 \right) \right)\times \left( \left( x-2 \right)-iy \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}} \right)=\dfrac{\pi }{3}$
$\Rightarrow$ $\arg \left( \dfrac{\left( x-1 \right)\left( x-2 \right)+y\left( y-1 \right)+i\left( y-1 \right)\left( x-2 \right)-iy\left( x-1 \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}} \right)=\dfrac{\pi }{3}$
Opening the brackets, we get
$\Rightarrow$ $\arg \left( \dfrac{\left( {{x}^{2}}-3x+2+{{y}^{2}}-y \right)+i\left( xy-2y-x+2-xy+y \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}} \right)=\dfrac{\pi }{3}$
$\Rightarrow$ $\arg \left( \dfrac{\left( {{x}^{2}}+{{y}^{2}}-3x-y+2 \right)+i\left( -x-y+2 \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}} \right)=\dfrac{\pi }{3}$
$\Rightarrow$ $\arg \left( \dfrac{\left( {{x}^{2}}+{{y}^{2}}-3x-y+2 \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}}+i\dfrac{\left( -x-y+2 \right)}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}} \right)=\dfrac{\pi }{3}$……………….(ii)
Now, we know that argument of any complex number ‘a+ib’ is given by the relation
$\arg \left( a+ib \right)={{\tan }^{-1}}\left( \dfrac{b}{a} \right)..............\left( iii \right)$
Hence, using equation (iii), we can get argument of equation (ii) as
$\Rightarrow$ ${{\tan }^{-1}}\left( \dfrac{\dfrac{-x-y+2}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}}}{\dfrac{{{x}^{2}}+{{y}^{2}}-3x-y+2}{{{\left( x-2 \right)}^{2}}+{{y}^{2}}}} \right)=\dfrac{\pi }{3}$
Cancelling the like terms and transferring ${{\tan }^{-1}}$ function to other side, hence we get
$\Rightarrow$ $\dfrac{-x-y+2}{{{x}^{2}}+{{y}^{2}}-3x-y+2}=\tan \dfrac{\pi }{3}$
Substituting the value of right hand side, we get
$\Rightarrow$ $\dfrac{-x-y+2}{{{x}^{2}}+{{y}^{2}}-3x-y+2}=\sqrt{3}$
Now, on cross multiplying above relation, we get an equation as
$\Rightarrow$ $\dfrac{-x-y+2}{\sqrt{3}}={{x}^{2}}+{{y}^{2}}-3x-y+2$
${{x}^{2}}+{{y}^{2}}-3x-y+2=\dfrac{-x}{\sqrt{3}}-\dfrac{y}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}$
${{x}^{2}}+{{y}^{2}}+x\left( \dfrac{1}{\sqrt{3}}-3 \right)+y\left( \dfrac{1}{\sqrt{3}}-1 \right)+2-\dfrac{2}{\sqrt{3}}=0...........\left( iv \right)$
Now, on comparing the above equation with the standard equation of circle, i.e.,
${{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0$
We can observe that equation (iv) is representing an equation of circle, where
$2g=\left( \dfrac{1}{\sqrt{3}}-3 \right),2f=\left( \dfrac{1}{\sqrt{3}}-1 \right),c=2-\dfrac{2}{\sqrt{3}}$
Hence, the locus of point ‘z’ by the given relation $\arg \left( \dfrac{z-1-i}{z-2} \right)=\dfrac{\pi }{3}$ is a circle.
Note: One can prove the locus of the points of ‘z’ from a given equation by using the property of a circle that is angle formed by a chord in the same segment will represent a circle. But this will be a lengthy process.
Hence, given relation can be generalize such that equation
$\arg \left( \dfrac{z-1-i}{z-2} \right)=\theta \left( \theta \ne \pi \right)$or$\left( \theta \ne 0 \right)$
Will always represent a circle where $\theta $ is less than ${{180}^{\circ }}$ .
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

The camels hump is made of which tissues a Skeletal class 11 biology CBSE

