
Let\[x = {\left( {5\sqrt 3 + 8} \right)^{2n + 1}},n \in N\], where \[\left[ x \right]\] is greatest integer less than or equal to \[x\] and \[\left\{ x \right\} = x - \left[ x \right]\], then
A) \[\left[ x \right]\] is even
B) \[\left[ x \right]\] is odd
C) \[x\left\{ x \right\} = {\left( {11} \right)^{2n + 1}}\]
D) \[x\left\{ x \right\} = {\left( {13} \right)^{2n + 1}}\]
Answer
504.6k+ views
Hint: Here we are given an equation and we are required to find if the greatest integer value of \[x\] is even or odd and we also have to find the value of product of \[x\] and factorial part of \[x\]. We solve it by subtracting the argument of \[x\] from\[x\]. We do this as the argument is less than one. We solve further to get the desired results.
Formula used: We have used the following to solve this question
\[
{\left( {x + y} \right)^n} = {}^n{C_1}{x^{n - 1}}{y^1} + {}^n{C_2}{x^{n - 2}}{y^2} + .... + {}^n{C_n}{x^0}{y^n} \\
{\left( {x + y} \right)^n} = - {}^n{C_1}{x^{n - 1}}{y^1} + {}^n{C_2}{x^{n - 2}}{y^2} - .... + {\left( { - 1} \right)^n}{}^n{C_n}{x^0}{y^n} \\
\]
And
\[\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)\]
Complete step-by-step solution:
We are given the fractional part of \[x\] as,
\[\left\{ x \right\} = x - \left[ x \right]\]
From it we obtain \[x\] as,
\[x = \left\{ x \right\} + \left[ x \right] \]
Now we see that
\[
5\sqrt 3 - 8 = 5 \times 1.73 - 8 \\
\Rightarrow 5\sqrt 3 - 8 = 0.65 \\
\Rightarrow 5\sqrt 3 - 8 < 1 \\
\]
So we consider \[{\left( {5\sqrt 3 - 8} \right)^{2n + 1}}\] as \[\left\{ {{x'}} \right\}\]
So, we subtract \[\left\{ {{x'}} \right\}\] from \[x\] as,
\[\left\{ x \right\} + \left[ x \right] - \left\{ {{x'}} \right\} = {\left( {5\sqrt 3 + 8} \right)^{2n + 1}} - {\left( {5\sqrt 3 - 8} \right)^{2n + 1}}\]
We know that,
\[
{\left( {x + y} \right)^n} = {}^n{C_1}{x^{n - 1}}{y^1} + {}^n{C_2}{x^{n - 2}}{y^2} + .... + {}^n{C_n}{x^0}{y^n} \\
{\left( {x - y} \right)^n} = - {}^n{C_1}{x^{n - 1}}{y^1} + {}^n{C_2}{x^{n - 2}}{y^2} - .... + {\left( { - 1} \right)^n}{}^n{C_n}{x^0}{y^n} \]
Using these formulas we get,
\[ \Rightarrow \left\{ x \right\} + \left[ x \right] - \left\{ {{x'}} \right\} =
\left[ {{}^{2n + 1}{C_1}5{{\sqrt 3 }^{2n}}{8^1} + {}^{2n + 1}{C_2}5{{\sqrt 3 }^{2n - 1}}{8^2} + {}^{2n + 1}{C_3}5{{\sqrt 3 }^{2n - 2}}{8^3} + .....} \right] - \left[ { - {}^{2n + 1}{C_1}5{{\sqrt 3 }^{2n}}{8^1} + {}^{2n + 1}{C_2}5{{\sqrt 3 }^{2n - 1}}{8^2} - {}^{2n + 1}{C_3}5{{\sqrt 3 }^{2n - 2}}{8^3} + .....} \right]\]
On solving it further,
\[ \Rightarrow \left\{ x \right\} + \left[ x \right] - \left\{ {{x'}} \right\} = 2\left[ {{}^{2n + 1}{C_1}5{{\sqrt 3 }^{2n}}{8^1} + {}^{2n + 1}{C_3}5{{\sqrt 3 }^{2n - 2}}{8^3} + ...} \right]\]
This shows that \[\left\{ x \right\} + \left[ x \right] - \left\{ {{x'}} \right\}\] is an even integer.
This means that \[\left\{ x \right\} - \left\{ {{x'}} \right\}\] must also be an integer,
As \[0 < \left\{ x \right\} < 1\] and \[0 < \left\{ {{x'}} \right\} < 1\], this means that \[\left\{ x \right\} - \left\{ {{x'}} \right\} = 0\].
Which means that \[\left[ x \right]\] is an even integer
Now since \[\left\{ x \right\} - \left\{ {{x'}} \right\} = 0\], this means that
\[\left\{ x \right\} = \left\{ {{x'}} \right\}\]
\[
\Rightarrow x\left\{ x \right\} = x\left\{ {{x'}} \right\} \\
\Rightarrow x\left\{ x \right\} = {\left( {5\sqrt 3 + 8} \right)^{2n + 1}}^{} \cdot {\left( {5\sqrt 3 - 8} \right)^{2n + 1}} \\
\Rightarrow x\left\{ x \right\} = {\left[ {\left( {5\sqrt 3 + 8} \right)\left( {5\sqrt 3 - 8} \right)} \right]^{2n + 1}} \\
\Rightarrow x\left\{ x \right\} = {\left[ {{{(5\sqrt 3 )}^2} - {8^2}} \right]^{2n + 1}} \\
\Rightarrow x\left\{ x \right\} = {\left[ {25 \times 3 - 64} \right]^{2n + 1}} \\
\Rightarrow x\left\{ x \right\} = {\left[ {75 - 64} \right]^{2n + 1}} \\
\Rightarrow x\left\{ x \right\} = {\left[ {11} \right]^{2n + 1}} \]
Thus the answer of this question comes out to be options A) and C).
Note: This is to note that we have used the argument of the given function here as the base of the argument is also less than one. We should know that any number is formed from two parts, first part is the fraction part and second part is the integer part.
Formula used: We have used the following to solve this question
\[
{\left( {x + y} \right)^n} = {}^n{C_1}{x^{n - 1}}{y^1} + {}^n{C_2}{x^{n - 2}}{y^2} + .... + {}^n{C_n}{x^0}{y^n} \\
{\left( {x + y} \right)^n} = - {}^n{C_1}{x^{n - 1}}{y^1} + {}^n{C_2}{x^{n - 2}}{y^2} - .... + {\left( { - 1} \right)^n}{}^n{C_n}{x^0}{y^n} \\
\]
And
\[\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)\]
Complete step-by-step solution:
We are given the fractional part of \[x\] as,
\[\left\{ x \right\} = x - \left[ x \right]\]
From it we obtain \[x\] as,
\[x = \left\{ x \right\} + \left[ x \right] \]
Now we see that
\[
5\sqrt 3 - 8 = 5 \times 1.73 - 8 \\
\Rightarrow 5\sqrt 3 - 8 = 0.65 \\
\Rightarrow 5\sqrt 3 - 8 < 1 \\
\]
So we consider \[{\left( {5\sqrt 3 - 8} \right)^{2n + 1}}\] as \[\left\{ {{x'}} \right\}\]
So, we subtract \[\left\{ {{x'}} \right\}\] from \[x\] as,
\[\left\{ x \right\} + \left[ x \right] - \left\{ {{x'}} \right\} = {\left( {5\sqrt 3 + 8} \right)^{2n + 1}} - {\left( {5\sqrt 3 - 8} \right)^{2n + 1}}\]
We know that,
\[
{\left( {x + y} \right)^n} = {}^n{C_1}{x^{n - 1}}{y^1} + {}^n{C_2}{x^{n - 2}}{y^2} + .... + {}^n{C_n}{x^0}{y^n} \\
{\left( {x - y} \right)^n} = - {}^n{C_1}{x^{n - 1}}{y^1} + {}^n{C_2}{x^{n - 2}}{y^2} - .... + {\left( { - 1} \right)^n}{}^n{C_n}{x^0}{y^n} \]
Using these formulas we get,
\[ \Rightarrow \left\{ x \right\} + \left[ x \right] - \left\{ {{x'}} \right\} =
\left[ {{}^{2n + 1}{C_1}5{{\sqrt 3 }^{2n}}{8^1} + {}^{2n + 1}{C_2}5{{\sqrt 3 }^{2n - 1}}{8^2} + {}^{2n + 1}{C_3}5{{\sqrt 3 }^{2n - 2}}{8^3} + .....} \right] - \left[ { - {}^{2n + 1}{C_1}5{{\sqrt 3 }^{2n}}{8^1} + {}^{2n + 1}{C_2}5{{\sqrt 3 }^{2n - 1}}{8^2} - {}^{2n + 1}{C_3}5{{\sqrt 3 }^{2n - 2}}{8^3} + .....} \right]\]
On solving it further,
\[ \Rightarrow \left\{ x \right\} + \left[ x \right] - \left\{ {{x'}} \right\} = 2\left[ {{}^{2n + 1}{C_1}5{{\sqrt 3 }^{2n}}{8^1} + {}^{2n + 1}{C_3}5{{\sqrt 3 }^{2n - 2}}{8^3} + ...} \right]\]
This shows that \[\left\{ x \right\} + \left[ x \right] - \left\{ {{x'}} \right\}\] is an even integer.
This means that \[\left\{ x \right\} - \left\{ {{x'}} \right\}\] must also be an integer,
As \[0 < \left\{ x \right\} < 1\] and \[0 < \left\{ {{x'}} \right\} < 1\], this means that \[\left\{ x \right\} - \left\{ {{x'}} \right\} = 0\].
Which means that \[\left[ x \right]\] is an even integer
Now since \[\left\{ x \right\} - \left\{ {{x'}} \right\} = 0\], this means that
\[\left\{ x \right\} = \left\{ {{x'}} \right\}\]
\[
\Rightarrow x\left\{ x \right\} = x\left\{ {{x'}} \right\} \\
\Rightarrow x\left\{ x \right\} = {\left( {5\sqrt 3 + 8} \right)^{2n + 1}}^{} \cdot {\left( {5\sqrt 3 - 8} \right)^{2n + 1}} \\
\Rightarrow x\left\{ x \right\} = {\left[ {\left( {5\sqrt 3 + 8} \right)\left( {5\sqrt 3 - 8} \right)} \right]^{2n + 1}} \\
\Rightarrow x\left\{ x \right\} = {\left[ {{{(5\sqrt 3 )}^2} - {8^2}} \right]^{2n + 1}} \\
\Rightarrow x\left\{ x \right\} = {\left[ {25 \times 3 - 64} \right]^{2n + 1}} \\
\Rightarrow x\left\{ x \right\} = {\left[ {75 - 64} \right]^{2n + 1}} \\
\Rightarrow x\left\{ x \right\} = {\left[ {11} \right]^{2n + 1}} \]
Thus the answer of this question comes out to be options A) and C).
Note: This is to note that we have used the argument of the given function here as the base of the argument is also less than one. We should know that any number is formed from two parts, first part is the fraction part and second part is the integer part.
Recently Updated Pages
A hunter aims at a monkey sitting on a tree at a considerable class 11 physics CBSE

The respiratory center of the brain is located in AMedullaoblongata class 11 biology CBSE

What are the postulates of Bohrs model of an atom class 11 chemistry CBSE

What is the number of numbers less than 1000 and divisible class 11 maths CBSE

Water stands at level A in the arrangement shown in class 11 physics CBSE

What would be the ploidy of the cell of the tetrad class 11 biology CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

