
Let\[x = {\left( {5\sqrt 3 + 8} \right)^{2n + 1}},n \in N\], where \[\left[ x \right]\] is greatest integer less than or equal to \[x\] and \[\left\{ x \right\} = x - \left[ x \right]\], then
A) \[\left[ x \right]\] is even
B) \[\left[ x \right]\] is odd
C) \[x\left\{ x \right\} = {\left( {11} \right)^{2n + 1}}\]
D) \[x\left\{ x \right\} = {\left( {13} \right)^{2n + 1}}\]
Answer
519k+ views
Hint: Here we are given an equation and we are required to find if the greatest integer value of \[x\] is even or odd and we also have to find the value of product of \[x\] and factorial part of \[x\]. We solve it by subtracting the argument of \[x\] from\[x\]. We do this as the argument is less than one. We solve further to get the desired results.
Formula used: We have used the following to solve this question
\[
{\left( {x + y} \right)^n} = {}^n{C_1}{x^{n - 1}}{y^1} + {}^n{C_2}{x^{n - 2}}{y^2} + .... + {}^n{C_n}{x^0}{y^n} \\
{\left( {x + y} \right)^n} = - {}^n{C_1}{x^{n - 1}}{y^1} + {}^n{C_2}{x^{n - 2}}{y^2} - .... + {\left( { - 1} \right)^n}{}^n{C_n}{x^0}{y^n} \\
\]
And
\[\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)\]
Complete step-by-step solution:
We are given the fractional part of \[x\] as,
\[\left\{ x \right\} = x - \left[ x \right]\]
From it we obtain \[x\] as,
\[x = \left\{ x \right\} + \left[ x \right] \]
Now we see that
\[
5\sqrt 3 - 8 = 5 \times 1.73 - 8 \\
\Rightarrow 5\sqrt 3 - 8 = 0.65 \\
\Rightarrow 5\sqrt 3 - 8 < 1 \\
\]
So we consider \[{\left( {5\sqrt 3 - 8} \right)^{2n + 1}}\] as \[\left\{ {{x'}} \right\}\]
So, we subtract \[\left\{ {{x'}} \right\}\] from \[x\] as,
\[\left\{ x \right\} + \left[ x \right] - \left\{ {{x'}} \right\} = {\left( {5\sqrt 3 + 8} \right)^{2n + 1}} - {\left( {5\sqrt 3 - 8} \right)^{2n + 1}}\]
We know that,
\[
{\left( {x + y} \right)^n} = {}^n{C_1}{x^{n - 1}}{y^1} + {}^n{C_2}{x^{n - 2}}{y^2} + .... + {}^n{C_n}{x^0}{y^n} \\
{\left( {x - y} \right)^n} = - {}^n{C_1}{x^{n - 1}}{y^1} + {}^n{C_2}{x^{n - 2}}{y^2} - .... + {\left( { - 1} \right)^n}{}^n{C_n}{x^0}{y^n} \]
Using these formulas we get,
\[ \Rightarrow \left\{ x \right\} + \left[ x \right] - \left\{ {{x'}} \right\} =
\left[ {{}^{2n + 1}{C_1}5{{\sqrt 3 }^{2n}}{8^1} + {}^{2n + 1}{C_2}5{{\sqrt 3 }^{2n - 1}}{8^2} + {}^{2n + 1}{C_3}5{{\sqrt 3 }^{2n - 2}}{8^3} + .....} \right] - \left[ { - {}^{2n + 1}{C_1}5{{\sqrt 3 }^{2n}}{8^1} + {}^{2n + 1}{C_2}5{{\sqrt 3 }^{2n - 1}}{8^2} - {}^{2n + 1}{C_3}5{{\sqrt 3 }^{2n - 2}}{8^3} + .....} \right]\]
On solving it further,
\[ \Rightarrow \left\{ x \right\} + \left[ x \right] - \left\{ {{x'}} \right\} = 2\left[ {{}^{2n + 1}{C_1}5{{\sqrt 3 }^{2n}}{8^1} + {}^{2n + 1}{C_3}5{{\sqrt 3 }^{2n - 2}}{8^3} + ...} \right]\]
This shows that \[\left\{ x \right\} + \left[ x \right] - \left\{ {{x'}} \right\}\] is an even integer.
This means that \[\left\{ x \right\} - \left\{ {{x'}} \right\}\] must also be an integer,
As \[0 < \left\{ x \right\} < 1\] and \[0 < \left\{ {{x'}} \right\} < 1\], this means that \[\left\{ x \right\} - \left\{ {{x'}} \right\} = 0\].
Which means that \[\left[ x \right]\] is an even integer
Now since \[\left\{ x \right\} - \left\{ {{x'}} \right\} = 0\], this means that
\[\left\{ x \right\} = \left\{ {{x'}} \right\}\]
\[
\Rightarrow x\left\{ x \right\} = x\left\{ {{x'}} \right\} \\
\Rightarrow x\left\{ x \right\} = {\left( {5\sqrt 3 + 8} \right)^{2n + 1}}^{} \cdot {\left( {5\sqrt 3 - 8} \right)^{2n + 1}} \\
\Rightarrow x\left\{ x \right\} = {\left[ {\left( {5\sqrt 3 + 8} \right)\left( {5\sqrt 3 - 8} \right)} \right]^{2n + 1}} \\
\Rightarrow x\left\{ x \right\} = {\left[ {{{(5\sqrt 3 )}^2} - {8^2}} \right]^{2n + 1}} \\
\Rightarrow x\left\{ x \right\} = {\left[ {25 \times 3 - 64} \right]^{2n + 1}} \\
\Rightarrow x\left\{ x \right\} = {\left[ {75 - 64} \right]^{2n + 1}} \\
\Rightarrow x\left\{ x \right\} = {\left[ {11} \right]^{2n + 1}} \]
Thus the answer of this question comes out to be options A) and C).
Note: This is to note that we have used the argument of the given function here as the base of the argument is also less than one. We should know that any number is formed from two parts, first part is the fraction part and second part is the integer part.
Formula used: We have used the following to solve this question
\[
{\left( {x + y} \right)^n} = {}^n{C_1}{x^{n - 1}}{y^1} + {}^n{C_2}{x^{n - 2}}{y^2} + .... + {}^n{C_n}{x^0}{y^n} \\
{\left( {x + y} \right)^n} = - {}^n{C_1}{x^{n - 1}}{y^1} + {}^n{C_2}{x^{n - 2}}{y^2} - .... + {\left( { - 1} \right)^n}{}^n{C_n}{x^0}{y^n} \\
\]
And
\[\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)\]
Complete step-by-step solution:
We are given the fractional part of \[x\] as,
\[\left\{ x \right\} = x - \left[ x \right]\]
From it we obtain \[x\] as,
\[x = \left\{ x \right\} + \left[ x \right] \]
Now we see that
\[
5\sqrt 3 - 8 = 5 \times 1.73 - 8 \\
\Rightarrow 5\sqrt 3 - 8 = 0.65 \\
\Rightarrow 5\sqrt 3 - 8 < 1 \\
\]
So we consider \[{\left( {5\sqrt 3 - 8} \right)^{2n + 1}}\] as \[\left\{ {{x'}} \right\}\]
So, we subtract \[\left\{ {{x'}} \right\}\] from \[x\] as,
\[\left\{ x \right\} + \left[ x \right] - \left\{ {{x'}} \right\} = {\left( {5\sqrt 3 + 8} \right)^{2n + 1}} - {\left( {5\sqrt 3 - 8} \right)^{2n + 1}}\]
We know that,
\[
{\left( {x + y} \right)^n} = {}^n{C_1}{x^{n - 1}}{y^1} + {}^n{C_2}{x^{n - 2}}{y^2} + .... + {}^n{C_n}{x^0}{y^n} \\
{\left( {x - y} \right)^n} = - {}^n{C_1}{x^{n - 1}}{y^1} + {}^n{C_2}{x^{n - 2}}{y^2} - .... + {\left( { - 1} \right)^n}{}^n{C_n}{x^0}{y^n} \]
Using these formulas we get,
\[ \Rightarrow \left\{ x \right\} + \left[ x \right] - \left\{ {{x'}} \right\} =
\left[ {{}^{2n + 1}{C_1}5{{\sqrt 3 }^{2n}}{8^1} + {}^{2n + 1}{C_2}5{{\sqrt 3 }^{2n - 1}}{8^2} + {}^{2n + 1}{C_3}5{{\sqrt 3 }^{2n - 2}}{8^3} + .....} \right] - \left[ { - {}^{2n + 1}{C_1}5{{\sqrt 3 }^{2n}}{8^1} + {}^{2n + 1}{C_2}5{{\sqrt 3 }^{2n - 1}}{8^2} - {}^{2n + 1}{C_3}5{{\sqrt 3 }^{2n - 2}}{8^3} + .....} \right]\]
On solving it further,
\[ \Rightarrow \left\{ x \right\} + \left[ x \right] - \left\{ {{x'}} \right\} = 2\left[ {{}^{2n + 1}{C_1}5{{\sqrt 3 }^{2n}}{8^1} + {}^{2n + 1}{C_3}5{{\sqrt 3 }^{2n - 2}}{8^3} + ...} \right]\]
This shows that \[\left\{ x \right\} + \left[ x \right] - \left\{ {{x'}} \right\}\] is an even integer.
This means that \[\left\{ x \right\} - \left\{ {{x'}} \right\}\] must also be an integer,
As \[0 < \left\{ x \right\} < 1\] and \[0 < \left\{ {{x'}} \right\} < 1\], this means that \[\left\{ x \right\} - \left\{ {{x'}} \right\} = 0\].
Which means that \[\left[ x \right]\] is an even integer
Now since \[\left\{ x \right\} - \left\{ {{x'}} \right\} = 0\], this means that
\[\left\{ x \right\} = \left\{ {{x'}} \right\}\]
\[
\Rightarrow x\left\{ x \right\} = x\left\{ {{x'}} \right\} \\
\Rightarrow x\left\{ x \right\} = {\left( {5\sqrt 3 + 8} \right)^{2n + 1}}^{} \cdot {\left( {5\sqrt 3 - 8} \right)^{2n + 1}} \\
\Rightarrow x\left\{ x \right\} = {\left[ {\left( {5\sqrt 3 + 8} \right)\left( {5\sqrt 3 - 8} \right)} \right]^{2n + 1}} \\
\Rightarrow x\left\{ x \right\} = {\left[ {{{(5\sqrt 3 )}^2} - {8^2}} \right]^{2n + 1}} \\
\Rightarrow x\left\{ x \right\} = {\left[ {25 \times 3 - 64} \right]^{2n + 1}} \\
\Rightarrow x\left\{ x \right\} = {\left[ {75 - 64} \right]^{2n + 1}} \\
\Rightarrow x\left\{ x \right\} = {\left[ {11} \right]^{2n + 1}} \]
Thus the answer of this question comes out to be options A) and C).
Note: This is to note that we have used the argument of the given function here as the base of the argument is also less than one. We should know that any number is formed from two parts, first part is the fraction part and second part is the integer part.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

