Answer

Verified

484.8k+ views

Hint: First of all put $z=x+iy$ in $v=\dfrac{1-iz}{z-i}$. Then simplify the v by separating real and imaginary part of it then put $\left| v \right|=1$ to find the value of z.

Complete step-by-step answer:

Here we are given that $z=x+iy$ and $v=\dfrac{1-iz}{z-i}$, we have to show that if $\left| v \right|=1$, then z is purely real.

First of all, let us take given expression,

$v=\dfrac{1-iz}{z-i}$

Here we know that $z=x+iy$. By putting the value of z in the above expression, we get;

$\begin{align}

& v=\dfrac{1-i\left( x+iy \right)}{\left( x+iy \right)-i} \\

& or \\

& v=\dfrac{1-ix-{{\left( i \right)}^{2}}y}{x+iy-i} \\

\end{align}$

As we know that i is an imaginary number & $i=\sqrt{-1}$, therefore we get ${{i}^{2}}=-1$

By putting the value of ${{i}^{2}}$ in above expression, we get,

$\begin{align}

& v=\dfrac{1-ix-\left( -1 \right)y}{x+iy-i} \\

& or \\

& v=\dfrac{1-ix+y}{x+iy-i} \\

\end{align}$

By separating real terms and imaginary terms in numerator denominator, we get,

$v=\dfrac{\left( 1+y \right)-ix}{x+i\left( y-1 \right)}$

Now, to rationalise the denominator, we will multiply numerator and denominator of above expression by $x-i\left( y-1 \right)$, we get,

$v=\dfrac{\left[ \left( 1+y \right)-ix \right]}{\left[ x+i\left( y-1 \right) \right]}\times \dfrac{\left[ x-i\left( y-1 \right) \right]}{\left[ x-i\left( y-1 \right) \right]}$

We know that $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$. By applying this in denominator of above expression, we get,

$v=\dfrac{\left[ \left( 1+y \right)-ix \right]\times \left[ x-i\left( y-1 \right) \right]}{\left[ {{\left( x \right)}^{2}}+{{\left( i\left( y-1 \right) \right)}^{2}} \right]}$

By simplifying the above expression, we get,

$v=\dfrac{\left( 1+y \right).x-i\left( y-1 \right)\left( y+1 \right)-ix.x+\left( ix \right)\left( i\left( y-1 \right) \right)}{\left[ {{x}^{2}}-{{i}^{2}}{{\left( y-1 \right)}^{2}} \right]}$

By further simplifying above expression, we get,

$v=\dfrac{\left( x+yx \right)-i\left( {{y}^{2}}-1 \right)-i{{x}^{2}}+{{i}^{2}}\left( xy-x \right)}{\left[ {{x}^{2}}-{{i}^{2}}{{\left( y-1 \right)}^{2}} \right]}$

By putting the value of ${{i}^{2}}=1$ in above expression, we get,

$\begin{align}

& v=\dfrac{\left( x+yx \right)-\left( i \right)\left( {{y}^{2}}-1 \right)-i{{x}^{2}}+\left( -1 \right)\left( xy-x \right)}{\left[ {{x}^{2}}-\left( -1 \right){{\left( y-1 \right)}^{2}} \right]} \\

& v=\dfrac{\left[ \left( x+yx \right)-i\left( {{y}^{2}}-1 \right)-i{{x}^{2}}-xy+x \right]}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \\

\end{align}$

By further simplifying the above expression, we get

$v=\dfrac{2x+i\left( -{{y}^{2}}+1-{{x}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}$

By separating real and imaginary term of above expression, we get,

$v=\dfrac{2x}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}+\dfrac{i\left( 1-{{x}^{2}}-{{y}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}$

Now we know that if we have $M=P+iQ$, then $M=\sqrt{{{P}^{2}}+{{Q}^{2}}}$. Using this we get,

\[\left| v \right|=\sqrt{{{\left( \dfrac{2x}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}+{{\left( \dfrac{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}}\]

Also, as we are given that $\left| v \right|=1$, therefore, we get

\[\left| v \right|=\sqrt{{{\left( \dfrac{2x}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}+{{\left( \dfrac{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}}=1\]

By squaring both sides, we get

\[{{\left( \dfrac{2x}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}+{{\left( \dfrac{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}=1\]

By simplifying the above equation, we get,

\[\dfrac{4{{x}^{2}}+{{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}^{2}}}{{{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}^{2}}}=1\]

By cross multiplying the above equation, we get,

\[\begin{align}

& 4{{x}^{2}}+{{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}^{2}}={{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}^{2}} \\

& or \\

& 4{{x}^{2}}+{{\left( 1-\left( {{x}^{2}}+{{y}^{2}} \right) \right)}^{2}}={{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}^{2}} \\

\end{align}\]

As we know that ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ by applying this in above equation, we get,

\[\begin{align}

& 4{{x}^{2}}+\left[ 1+{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}-2\left( {{x}^{2}}+{{y}^{2}} \right) \right]={{\left[ {{x}^{2}}+{{y}^{2}}+1-2y \right]}^{2}} \\

& =4{{x}^{2}}+1+{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}-2\left( {{x}^{2}}+{{y}^{2}} \right)={{\left[ \left( {{x}^{2}}+{{y}^{2}} \right)+\left( 1-2y \right) \right]}^{2}} \\

\end{align}\]

By applying ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$in RHS of above equation, we get,

\[=4{{x}^{2}}+1+{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}-2\left( {{x}^{2}}+{{y}^{2}} \right)={{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}+{{\left( 1-2y \right)}^{2}}+2\left( 1-2y \right)\left( {{x}^{2}}+{{y}^{2}} \right)\]

By cancelling the like terms from LHS and RHS, we get,

\[=4{{x}^{2}}+1-2\left( {{x}^{2}}+{{y}^{2}} \right)={{\left( 1-2y \right)}^{2}}+2\left( 1-2y \right)\left( {{x}^{2}}+{{y}^{2}} \right)\]

By simplifying above equation, we get,

\[\Rightarrow 4{{x}^{2}}+1-2{{x}^{2}}-2{{y}^{2}}=1+4{{y}^{2}}-4y+2\left( {{x}^{2}}+{{y}^{2}}-2{{x}^{2}}y-2{{y}^{3}} \right)\]

By rearranging the terms, we get,

\[\begin{align}

& \Rightarrow \left( 4{{x}^{2}}-2{{x}^{2}} \right)+1-2{{y}^{2}}=1+\left[ 4{{y}^{2}}+2{{y}^{2}} \right]+2{{x}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}} \\

& \Rightarrow 2{{x}^{2}}+1-2{{y}^{2}}=1+6{{y}^{2}}+2{{x}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}} \\

\end{align}\]

By cancelling the like terms, we get,

$\begin{align}

& \Rightarrow -2{{y}^{2}}=6{{y}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}} \\

& or\ 6{{y}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}}+2{{y}^{2}}=0 \\

& or\ 8{{y}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}}=0 \\

\end{align}$

By taking – 4y common, we get,

$-4y\left[ -2y+1+{{x}^{2}}+{{y}^{2}} \right]=0$

We can also write it as;

$-4y\left[ \left( {{y}^{2}}-2y+1 \right)+{{x}^{2}} \right]=0$

Here we can write $\left( {{y}^{2}}-2y+1 \right)={{\left( y-1 \right)}^{2}}$, therefore we get,

$-4y\left[ {{\left( y-1 \right)}^{2}}+{{x}^{2}} \right]=0$

As we can see that $\left[ {{\left( y-1 \right)}^{2}}+{{x}^{2}} \right]$ cannot be zero as they are always positive due to square, therefore we get,

$\begin{align}

& -4y=0 \\

& or\ y=0 \\

\end{align}$

Now, we know that $z=x+iy$

By putting y = 0, we get,

z = x

As z does not contain iota or i and contain only real number x, therefore it is purely real.

Hence, we have shown that z is purely real if $\left| v \right|=1$ where $v=\dfrac{1-iz}{z-i}$.

Note: Students must cross check every equation while solving the question because students often leave one or other term and get the wrong answer. Also student can cross check their answer by putting the value of z = x in expression for v and check if $\left| v \right|=1$ or not.

Complete step-by-step answer:

Here we are given that $z=x+iy$ and $v=\dfrac{1-iz}{z-i}$, we have to show that if $\left| v \right|=1$, then z is purely real.

First of all, let us take given expression,

$v=\dfrac{1-iz}{z-i}$

Here we know that $z=x+iy$. By putting the value of z in the above expression, we get;

$\begin{align}

& v=\dfrac{1-i\left( x+iy \right)}{\left( x+iy \right)-i} \\

& or \\

& v=\dfrac{1-ix-{{\left( i \right)}^{2}}y}{x+iy-i} \\

\end{align}$

As we know that i is an imaginary number & $i=\sqrt{-1}$, therefore we get ${{i}^{2}}=-1$

By putting the value of ${{i}^{2}}$ in above expression, we get,

$\begin{align}

& v=\dfrac{1-ix-\left( -1 \right)y}{x+iy-i} \\

& or \\

& v=\dfrac{1-ix+y}{x+iy-i} \\

\end{align}$

By separating real terms and imaginary terms in numerator denominator, we get,

$v=\dfrac{\left( 1+y \right)-ix}{x+i\left( y-1 \right)}$

Now, to rationalise the denominator, we will multiply numerator and denominator of above expression by $x-i\left( y-1 \right)$, we get,

$v=\dfrac{\left[ \left( 1+y \right)-ix \right]}{\left[ x+i\left( y-1 \right) \right]}\times \dfrac{\left[ x-i\left( y-1 \right) \right]}{\left[ x-i\left( y-1 \right) \right]}$

We know that $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$. By applying this in denominator of above expression, we get,

$v=\dfrac{\left[ \left( 1+y \right)-ix \right]\times \left[ x-i\left( y-1 \right) \right]}{\left[ {{\left( x \right)}^{2}}+{{\left( i\left( y-1 \right) \right)}^{2}} \right]}$

By simplifying the above expression, we get,

$v=\dfrac{\left( 1+y \right).x-i\left( y-1 \right)\left( y+1 \right)-ix.x+\left( ix \right)\left( i\left( y-1 \right) \right)}{\left[ {{x}^{2}}-{{i}^{2}}{{\left( y-1 \right)}^{2}} \right]}$

By further simplifying above expression, we get,

$v=\dfrac{\left( x+yx \right)-i\left( {{y}^{2}}-1 \right)-i{{x}^{2}}+{{i}^{2}}\left( xy-x \right)}{\left[ {{x}^{2}}-{{i}^{2}}{{\left( y-1 \right)}^{2}} \right]}$

By putting the value of ${{i}^{2}}=1$ in above expression, we get,

$\begin{align}

& v=\dfrac{\left( x+yx \right)-\left( i \right)\left( {{y}^{2}}-1 \right)-i{{x}^{2}}+\left( -1 \right)\left( xy-x \right)}{\left[ {{x}^{2}}-\left( -1 \right){{\left( y-1 \right)}^{2}} \right]} \\

& v=\dfrac{\left[ \left( x+yx \right)-i\left( {{y}^{2}}-1 \right)-i{{x}^{2}}-xy+x \right]}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \\

\end{align}$

By further simplifying the above expression, we get

$v=\dfrac{2x+i\left( -{{y}^{2}}+1-{{x}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}$

By separating real and imaginary term of above expression, we get,

$v=\dfrac{2x}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}+\dfrac{i\left( 1-{{x}^{2}}-{{y}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}$

Now we know that if we have $M=P+iQ$, then $M=\sqrt{{{P}^{2}}+{{Q}^{2}}}$. Using this we get,

\[\left| v \right|=\sqrt{{{\left( \dfrac{2x}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}+{{\left( \dfrac{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}}\]

Also, as we are given that $\left| v \right|=1$, therefore, we get

\[\left| v \right|=\sqrt{{{\left( \dfrac{2x}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}+{{\left( \dfrac{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}}=1\]

By squaring both sides, we get

\[{{\left( \dfrac{2x}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}+{{\left( \dfrac{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}=1\]

By simplifying the above equation, we get,

\[\dfrac{4{{x}^{2}}+{{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}^{2}}}{{{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}^{2}}}=1\]

By cross multiplying the above equation, we get,

\[\begin{align}

& 4{{x}^{2}}+{{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}^{2}}={{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}^{2}} \\

& or \\

& 4{{x}^{2}}+{{\left( 1-\left( {{x}^{2}}+{{y}^{2}} \right) \right)}^{2}}={{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}^{2}} \\

\end{align}\]

As we know that ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ by applying this in above equation, we get,

\[\begin{align}

& 4{{x}^{2}}+\left[ 1+{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}-2\left( {{x}^{2}}+{{y}^{2}} \right) \right]={{\left[ {{x}^{2}}+{{y}^{2}}+1-2y \right]}^{2}} \\

& =4{{x}^{2}}+1+{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}-2\left( {{x}^{2}}+{{y}^{2}} \right)={{\left[ \left( {{x}^{2}}+{{y}^{2}} \right)+\left( 1-2y \right) \right]}^{2}} \\

\end{align}\]

By applying ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$in RHS of above equation, we get,

\[=4{{x}^{2}}+1+{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}-2\left( {{x}^{2}}+{{y}^{2}} \right)={{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}+{{\left( 1-2y \right)}^{2}}+2\left( 1-2y \right)\left( {{x}^{2}}+{{y}^{2}} \right)\]

By cancelling the like terms from LHS and RHS, we get,

\[=4{{x}^{2}}+1-2\left( {{x}^{2}}+{{y}^{2}} \right)={{\left( 1-2y \right)}^{2}}+2\left( 1-2y \right)\left( {{x}^{2}}+{{y}^{2}} \right)\]

By simplifying above equation, we get,

\[\Rightarrow 4{{x}^{2}}+1-2{{x}^{2}}-2{{y}^{2}}=1+4{{y}^{2}}-4y+2\left( {{x}^{2}}+{{y}^{2}}-2{{x}^{2}}y-2{{y}^{3}} \right)\]

By rearranging the terms, we get,

\[\begin{align}

& \Rightarrow \left( 4{{x}^{2}}-2{{x}^{2}} \right)+1-2{{y}^{2}}=1+\left[ 4{{y}^{2}}+2{{y}^{2}} \right]+2{{x}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}} \\

& \Rightarrow 2{{x}^{2}}+1-2{{y}^{2}}=1+6{{y}^{2}}+2{{x}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}} \\

\end{align}\]

By cancelling the like terms, we get,

$\begin{align}

& \Rightarrow -2{{y}^{2}}=6{{y}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}} \\

& or\ 6{{y}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}}+2{{y}^{2}}=0 \\

& or\ 8{{y}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}}=0 \\

\end{align}$

By taking – 4y common, we get,

$-4y\left[ -2y+1+{{x}^{2}}+{{y}^{2}} \right]=0$

We can also write it as;

$-4y\left[ \left( {{y}^{2}}-2y+1 \right)+{{x}^{2}} \right]=0$

Here we can write $\left( {{y}^{2}}-2y+1 \right)={{\left( y-1 \right)}^{2}}$, therefore we get,

$-4y\left[ {{\left( y-1 \right)}^{2}}+{{x}^{2}} \right]=0$

As we can see that $\left[ {{\left( y-1 \right)}^{2}}+{{x}^{2}} \right]$ cannot be zero as they are always positive due to square, therefore we get,

$\begin{align}

& -4y=0 \\

& or\ y=0 \\

\end{align}$

Now, we know that $z=x+iy$

By putting y = 0, we get,

z = x

As z does not contain iota or i and contain only real number x, therefore it is purely real.

Hence, we have shown that z is purely real if $\left| v \right|=1$ where $v=\dfrac{1-iz}{z-i}$.

Note: Students must cross check every equation while solving the question because students often leave one or other term and get the wrong answer. Also student can cross check their answer by putting the value of z = x in expression for v and check if $\left| v \right|=1$ or not.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

How do you graph the function fx 4x class 9 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE