Let $z=x+iy$ and $v=\dfrac{1-iz}{z-i}$, show that if $\left| v \right|=1$, then z is purely real.
Last updated date: 18th Mar 2023
•
Total views: 305.7k
•
Views today: 7.88k
Answer
305.7k+ views
Hint: First of all put $z=x+iy$ in $v=\dfrac{1-iz}{z-i}$. Then simplify the v by separating real and imaginary part of it then put $\left| v \right|=1$ to find the value of z.
Complete step-by-step answer:
Here we are given that $z=x+iy$ and $v=\dfrac{1-iz}{z-i}$, we have to show that if $\left| v \right|=1$, then z is purely real.
First of all, let us take given expression,
$v=\dfrac{1-iz}{z-i}$
Here we know that $z=x+iy$. By putting the value of z in the above expression, we get;
$\begin{align}
& v=\dfrac{1-i\left( x+iy \right)}{\left( x+iy \right)-i} \\
& or \\
& v=\dfrac{1-ix-{{\left( i \right)}^{2}}y}{x+iy-i} \\
\end{align}$
As we know that i is an imaginary number & $i=\sqrt{-1}$, therefore we get ${{i}^{2}}=-1$
By putting the value of ${{i}^{2}}$ in above expression, we get,
$\begin{align}
& v=\dfrac{1-ix-\left( -1 \right)y}{x+iy-i} \\
& or \\
& v=\dfrac{1-ix+y}{x+iy-i} \\
\end{align}$
By separating real terms and imaginary terms in numerator denominator, we get,
$v=\dfrac{\left( 1+y \right)-ix}{x+i\left( y-1 \right)}$
Now, to rationalise the denominator, we will multiply numerator and denominator of above expression by $x-i\left( y-1 \right)$, we get,
$v=\dfrac{\left[ \left( 1+y \right)-ix \right]}{\left[ x+i\left( y-1 \right) \right]}\times \dfrac{\left[ x-i\left( y-1 \right) \right]}{\left[ x-i\left( y-1 \right) \right]}$
We know that $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$. By applying this in denominator of above expression, we get,
$v=\dfrac{\left[ \left( 1+y \right)-ix \right]\times \left[ x-i\left( y-1 \right) \right]}{\left[ {{\left( x \right)}^{2}}+{{\left( i\left( y-1 \right) \right)}^{2}} \right]}$
By simplifying the above expression, we get,
$v=\dfrac{\left( 1+y \right).x-i\left( y-1 \right)\left( y+1 \right)-ix.x+\left( ix \right)\left( i\left( y-1 \right) \right)}{\left[ {{x}^{2}}-{{i}^{2}}{{\left( y-1 \right)}^{2}} \right]}$
By further simplifying above expression, we get,
$v=\dfrac{\left( x+yx \right)-i\left( {{y}^{2}}-1 \right)-i{{x}^{2}}+{{i}^{2}}\left( xy-x \right)}{\left[ {{x}^{2}}-{{i}^{2}}{{\left( y-1 \right)}^{2}} \right]}$
By putting the value of ${{i}^{2}}=1$ in above expression, we get,
$\begin{align}
& v=\dfrac{\left( x+yx \right)-\left( i \right)\left( {{y}^{2}}-1 \right)-i{{x}^{2}}+\left( -1 \right)\left( xy-x \right)}{\left[ {{x}^{2}}-\left( -1 \right){{\left( y-1 \right)}^{2}} \right]} \\
& v=\dfrac{\left[ \left( x+yx \right)-i\left( {{y}^{2}}-1 \right)-i{{x}^{2}}-xy+x \right]}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \\
\end{align}$
By further simplifying the above expression, we get
$v=\dfrac{2x+i\left( -{{y}^{2}}+1-{{x}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}$
By separating real and imaginary term of above expression, we get,
$v=\dfrac{2x}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}+\dfrac{i\left( 1-{{x}^{2}}-{{y}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}$
Now we know that if we have $M=P+iQ$, then $M=\sqrt{{{P}^{2}}+{{Q}^{2}}}$. Using this we get,
\[\left| v \right|=\sqrt{{{\left( \dfrac{2x}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}+{{\left( \dfrac{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}}\]
Also, as we are given that $\left| v \right|=1$, therefore, we get
\[\left| v \right|=\sqrt{{{\left( \dfrac{2x}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}+{{\left( \dfrac{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}}=1\]
By squaring both sides, we get
\[{{\left( \dfrac{2x}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}+{{\left( \dfrac{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}=1\]
By simplifying the above equation, we get,
\[\dfrac{4{{x}^{2}}+{{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}^{2}}}{{{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}^{2}}}=1\]
By cross multiplying the above equation, we get,
\[\begin{align}
& 4{{x}^{2}}+{{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}^{2}}={{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}^{2}} \\
& or \\
& 4{{x}^{2}}+{{\left( 1-\left( {{x}^{2}}+{{y}^{2}} \right) \right)}^{2}}={{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}^{2}} \\
\end{align}\]
As we know that ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ by applying this in above equation, we get,
\[\begin{align}
& 4{{x}^{2}}+\left[ 1+{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}-2\left( {{x}^{2}}+{{y}^{2}} \right) \right]={{\left[ {{x}^{2}}+{{y}^{2}}+1-2y \right]}^{2}} \\
& =4{{x}^{2}}+1+{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}-2\left( {{x}^{2}}+{{y}^{2}} \right)={{\left[ \left( {{x}^{2}}+{{y}^{2}} \right)+\left( 1-2y \right) \right]}^{2}} \\
\end{align}\]
By applying ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$in RHS of above equation, we get,
\[=4{{x}^{2}}+1+{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}-2\left( {{x}^{2}}+{{y}^{2}} \right)={{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}+{{\left( 1-2y \right)}^{2}}+2\left( 1-2y \right)\left( {{x}^{2}}+{{y}^{2}} \right)\]
By cancelling the like terms from LHS and RHS, we get,
\[=4{{x}^{2}}+1-2\left( {{x}^{2}}+{{y}^{2}} \right)={{\left( 1-2y \right)}^{2}}+2\left( 1-2y \right)\left( {{x}^{2}}+{{y}^{2}} \right)\]
By simplifying above equation, we get,
\[\Rightarrow 4{{x}^{2}}+1-2{{x}^{2}}-2{{y}^{2}}=1+4{{y}^{2}}-4y+2\left( {{x}^{2}}+{{y}^{2}}-2{{x}^{2}}y-2{{y}^{3}} \right)\]
By rearranging the terms, we get,
\[\begin{align}
& \Rightarrow \left( 4{{x}^{2}}-2{{x}^{2}} \right)+1-2{{y}^{2}}=1+\left[ 4{{y}^{2}}+2{{y}^{2}} \right]+2{{x}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}} \\
& \Rightarrow 2{{x}^{2}}+1-2{{y}^{2}}=1+6{{y}^{2}}+2{{x}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}} \\
\end{align}\]
By cancelling the like terms, we get,
$\begin{align}
& \Rightarrow -2{{y}^{2}}=6{{y}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}} \\
& or\ 6{{y}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}}+2{{y}^{2}}=0 \\
& or\ 8{{y}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}}=0 \\
\end{align}$
By taking – 4y common, we get,
$-4y\left[ -2y+1+{{x}^{2}}+{{y}^{2}} \right]=0$
We can also write it as;
$-4y\left[ \left( {{y}^{2}}-2y+1 \right)+{{x}^{2}} \right]=0$
Here we can write $\left( {{y}^{2}}-2y+1 \right)={{\left( y-1 \right)}^{2}}$, therefore we get,
$-4y\left[ {{\left( y-1 \right)}^{2}}+{{x}^{2}} \right]=0$
As we can see that $\left[ {{\left( y-1 \right)}^{2}}+{{x}^{2}} \right]$ cannot be zero as they are always positive due to square, therefore we get,
$\begin{align}
& -4y=0 \\
& or\ y=0 \\
\end{align}$
Now, we know that $z=x+iy$
By putting y = 0, we get,
z = x
As z does not contain iota or i and contain only real number x, therefore it is purely real.
Hence, we have shown that z is purely real if $\left| v \right|=1$ where $v=\dfrac{1-iz}{z-i}$.
Note: Students must cross check every equation while solving the question because students often leave one or other term and get the wrong answer. Also student can cross check their answer by putting the value of z = x in expression for v and check if $\left| v \right|=1$ or not.
Complete step-by-step answer:
Here we are given that $z=x+iy$ and $v=\dfrac{1-iz}{z-i}$, we have to show that if $\left| v \right|=1$, then z is purely real.
First of all, let us take given expression,
$v=\dfrac{1-iz}{z-i}$
Here we know that $z=x+iy$. By putting the value of z in the above expression, we get;
$\begin{align}
& v=\dfrac{1-i\left( x+iy \right)}{\left( x+iy \right)-i} \\
& or \\
& v=\dfrac{1-ix-{{\left( i \right)}^{2}}y}{x+iy-i} \\
\end{align}$
As we know that i is an imaginary number & $i=\sqrt{-1}$, therefore we get ${{i}^{2}}=-1$
By putting the value of ${{i}^{2}}$ in above expression, we get,
$\begin{align}
& v=\dfrac{1-ix-\left( -1 \right)y}{x+iy-i} \\
& or \\
& v=\dfrac{1-ix+y}{x+iy-i} \\
\end{align}$
By separating real terms and imaginary terms in numerator denominator, we get,
$v=\dfrac{\left( 1+y \right)-ix}{x+i\left( y-1 \right)}$
Now, to rationalise the denominator, we will multiply numerator and denominator of above expression by $x-i\left( y-1 \right)$, we get,
$v=\dfrac{\left[ \left( 1+y \right)-ix \right]}{\left[ x+i\left( y-1 \right) \right]}\times \dfrac{\left[ x-i\left( y-1 \right) \right]}{\left[ x-i\left( y-1 \right) \right]}$
We know that $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$. By applying this in denominator of above expression, we get,
$v=\dfrac{\left[ \left( 1+y \right)-ix \right]\times \left[ x-i\left( y-1 \right) \right]}{\left[ {{\left( x \right)}^{2}}+{{\left( i\left( y-1 \right) \right)}^{2}} \right]}$
By simplifying the above expression, we get,
$v=\dfrac{\left( 1+y \right).x-i\left( y-1 \right)\left( y+1 \right)-ix.x+\left( ix \right)\left( i\left( y-1 \right) \right)}{\left[ {{x}^{2}}-{{i}^{2}}{{\left( y-1 \right)}^{2}} \right]}$
By further simplifying above expression, we get,
$v=\dfrac{\left( x+yx \right)-i\left( {{y}^{2}}-1 \right)-i{{x}^{2}}+{{i}^{2}}\left( xy-x \right)}{\left[ {{x}^{2}}-{{i}^{2}}{{\left( y-1 \right)}^{2}} \right]}$
By putting the value of ${{i}^{2}}=1$ in above expression, we get,
$\begin{align}
& v=\dfrac{\left( x+yx \right)-\left( i \right)\left( {{y}^{2}}-1 \right)-i{{x}^{2}}+\left( -1 \right)\left( xy-x \right)}{\left[ {{x}^{2}}-\left( -1 \right){{\left( y-1 \right)}^{2}} \right]} \\
& v=\dfrac{\left[ \left( x+yx \right)-i\left( {{y}^{2}}-1 \right)-i{{x}^{2}}-xy+x \right]}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \\
\end{align}$
By further simplifying the above expression, we get
$v=\dfrac{2x+i\left( -{{y}^{2}}+1-{{x}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}$
By separating real and imaginary term of above expression, we get,
$v=\dfrac{2x}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}+\dfrac{i\left( 1-{{x}^{2}}-{{y}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}$
Now we know that if we have $M=P+iQ$, then $M=\sqrt{{{P}^{2}}+{{Q}^{2}}}$. Using this we get,
\[\left| v \right|=\sqrt{{{\left( \dfrac{2x}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}+{{\left( \dfrac{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}}\]
Also, as we are given that $\left| v \right|=1$, therefore, we get
\[\left| v \right|=\sqrt{{{\left( \dfrac{2x}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}+{{\left( \dfrac{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}}=1\]
By squaring both sides, we get
\[{{\left( \dfrac{2x}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}+{{\left( \dfrac{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]} \right)}^{2}}=1\]
By simplifying the above equation, we get,
\[\dfrac{4{{x}^{2}}+{{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}^{2}}}{{{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}^{2}}}=1\]
By cross multiplying the above equation, we get,
\[\begin{align}
& 4{{x}^{2}}+{{\left( 1-{{x}^{2}}-{{y}^{2}} \right)}^{2}}={{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}^{2}} \\
& or \\
& 4{{x}^{2}}+{{\left( 1-\left( {{x}^{2}}+{{y}^{2}} \right) \right)}^{2}}={{\left[ {{x}^{2}}+{{\left( y-1 \right)}^{2}} \right]}^{2}} \\
\end{align}\]
As we know that ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ by applying this in above equation, we get,
\[\begin{align}
& 4{{x}^{2}}+\left[ 1+{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}-2\left( {{x}^{2}}+{{y}^{2}} \right) \right]={{\left[ {{x}^{2}}+{{y}^{2}}+1-2y \right]}^{2}} \\
& =4{{x}^{2}}+1+{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}-2\left( {{x}^{2}}+{{y}^{2}} \right)={{\left[ \left( {{x}^{2}}+{{y}^{2}} \right)+\left( 1-2y \right) \right]}^{2}} \\
\end{align}\]
By applying ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$in RHS of above equation, we get,
\[=4{{x}^{2}}+1+{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}-2\left( {{x}^{2}}+{{y}^{2}} \right)={{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}+{{\left( 1-2y \right)}^{2}}+2\left( 1-2y \right)\left( {{x}^{2}}+{{y}^{2}} \right)\]
By cancelling the like terms from LHS and RHS, we get,
\[=4{{x}^{2}}+1-2\left( {{x}^{2}}+{{y}^{2}} \right)={{\left( 1-2y \right)}^{2}}+2\left( 1-2y \right)\left( {{x}^{2}}+{{y}^{2}} \right)\]
By simplifying above equation, we get,
\[\Rightarrow 4{{x}^{2}}+1-2{{x}^{2}}-2{{y}^{2}}=1+4{{y}^{2}}-4y+2\left( {{x}^{2}}+{{y}^{2}}-2{{x}^{2}}y-2{{y}^{3}} \right)\]
By rearranging the terms, we get,
\[\begin{align}
& \Rightarrow \left( 4{{x}^{2}}-2{{x}^{2}} \right)+1-2{{y}^{2}}=1+\left[ 4{{y}^{2}}+2{{y}^{2}} \right]+2{{x}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}} \\
& \Rightarrow 2{{x}^{2}}+1-2{{y}^{2}}=1+6{{y}^{2}}+2{{x}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}} \\
\end{align}\]
By cancelling the like terms, we get,
$\begin{align}
& \Rightarrow -2{{y}^{2}}=6{{y}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}} \\
& or\ 6{{y}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}}+2{{y}^{2}}=0 \\
& or\ 8{{y}^{2}}-4y-4{{x}^{2}}y-4{{y}^{3}}=0 \\
\end{align}$
By taking – 4y common, we get,
$-4y\left[ -2y+1+{{x}^{2}}+{{y}^{2}} \right]=0$
We can also write it as;
$-4y\left[ \left( {{y}^{2}}-2y+1 \right)+{{x}^{2}} \right]=0$
Here we can write $\left( {{y}^{2}}-2y+1 \right)={{\left( y-1 \right)}^{2}}$, therefore we get,
$-4y\left[ {{\left( y-1 \right)}^{2}}+{{x}^{2}} \right]=0$
As we can see that $\left[ {{\left( y-1 \right)}^{2}}+{{x}^{2}} \right]$ cannot be zero as they are always positive due to square, therefore we get,
$\begin{align}
& -4y=0 \\
& or\ y=0 \\
\end{align}$
Now, we know that $z=x+iy$
By putting y = 0, we get,
z = x
As z does not contain iota or i and contain only real number x, therefore it is purely real.
Hence, we have shown that z is purely real if $\left| v \right|=1$ where $v=\dfrac{1-iz}{z-i}$.
Note: Students must cross check every equation while solving the question because students often leave one or other term and get the wrong answer. Also student can cross check their answer by putting the value of z = x in expression for v and check if $\left| v \right|=1$ or not.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
