
Let $y=y\left( x \right)$ be the solution of the differential equation $\dfrac{dy}{dx}+2y=f\left( x \right)$, where $f\left( x \right)=\left\{ \begin{matrix}
1,\text{ }x\in \left( 0,1 \right) \\
0,\text{ otherwise} \\
\end{matrix} \right.$
If $y\left( 0 \right)=0$ then $y\left( \dfrac{3}{2} \right)$ is
Answer
574.5k+ views
Hint: We solve this question by first comparing the given differential equation with $\dfrac{dy}{dx}+yP\left( x \right)=Q\left( x \right)$. Then we solve it by multiplying the equation with integrating factor by finding the integrating factor using the formula $I.F={{e}^{\int{P\left( x \right)dx}}}$. Then we solve the differential equation and find the values of the function $y=y\left( x \right)$ when $x\in \left( 0,1 \right)$ and when $x\notin \left( 0,1 \right)$. Then we substitute the value $x=0$ in $y\left( x \right)$ to find the value of function. Then we substitute the value $x=\dfrac{3}{2}$ in $y\left( x \right)$ to find the value $y\left( \dfrac{3}{2} \right)$.
Complete step-by-step answer:
Let us consider the given differential equation $\dfrac{dy}{dx}+2y=f\left( x \right)$.
As we see, it is in the form of $\dfrac{dy}{dx}+yP\left( x \right)=Q\left( x \right)$.
If any differential equation is of the above form then we multiply it with an integrating factor which is given by
$I.F={{e}^{\int{P\left( x \right)dx}}}$
Then we solve the differential equation as
$y\times \left( I.F \right)=y{{e}^{\int{P\left( x \right)dx}}}=\int{{{e}^{\int{P\left( x \right)dx}}}Q\left( x \right)}dx=\int{\left( I.F \right)\times Q\left( x \right)}dx$
Here, by comparing the given differential equation with the above form of differential equation we can say that,
$P\left( x \right)=2$ and $Q\left( x \right)=f\left( x \right)$
So, now let us find the integrating factor for our given differential equation,
$\begin{align}
& \Rightarrow I.F={{e}^{\int{2dx}}} \\
& \Rightarrow I.F={{e}^{2\int{dx}}} \\
& \Rightarrow I.F={{e}^{2x}} \\
\end{align}$
So, we get the solution of the differential equation as
$y{{e}^{2x}}=\int{{{e}^{2x}}f\left( x \right)dx}$
As we are given that $f\left( x \right)=\left\{ \begin{matrix}
1,\text{ }x\in \left( 0,1 \right) \\
0,\text{ otherwise} \\
\end{matrix} \right.$, let us substitute the value of $f\left( x \right)$ in the above solution of differential equation.
When $x\in \left( 0,1 \right)$
$\begin{align}
& \Rightarrow y{{e}^{2x}}=\int{{{e}^{2x}}\times 1dx} \\
& \Rightarrow y{{e}^{2x}}=\int{{{e}^{2x}}dx} \\
\end{align}$
Now let us consider the formula $\int{{{e}^{ax}}dx}=\dfrac{{{e}^{ax}}}{a}+c$. Using this we can write the above equation as,
$\Rightarrow y{{e}^{2x}}=\dfrac{{{e}^{2x}}}{2}+c$
Now let us divide the above equation with ${{e}^{2x}}$.
$\Rightarrow y=\dfrac{1}{2}+c{{e}^{-2x}}$
As, we are given that $y=y\left( x \right)$ we can substitute it in the above equation.
$\Rightarrow y\left( x \right)=\dfrac{1}{2}+c{{e}^{-2x}}$
So, we get the value of $y\left( x \right)$ in the interval $x\in \left( 0,1 \right)$ as $y\left( x \right)=\dfrac{1}{2}+c{{e}^{-2x}}$.
When $x\notin \left( 0,1 \right)$
$\begin{align}
& \Rightarrow y{{e}^{2x}}=\int{{{e}^{2x}}\times 0dx} \\
& \Rightarrow y{{e}^{2x}}=\int{0dx} \\
\end{align}$
Now let us consider the formula $\int{0dx}=\text{constant}$. Using this we can write the above equation as,
$\begin{align}
& \Rightarrow y{{e}^{2x}}=C \\
& \Rightarrow y=C{{e}^{-2x}} \\
\end{align}$
So, we get the function $y\left( x \right)$ as
$y\left( x \right)=\left\{ \begin{matrix}
\dfrac{1}{2}-c{{e}^{-2x}},\text{ }x\in \left( 0,1 \right) \\
C{{e}^{-2x}},\text{ otherwise} \\
\end{matrix} \right.$
We are given that $y\left( 0 \right)=0$.
When $x=0$ the function is $y\left( x \right)=C{{e}^{-2x}}$. So, substituting the value $x=0$, we get
$\begin{align}
& \Rightarrow y\left( 0 \right)=0=C{{e}^{-2\left( 0 \right)}} \\
& \Rightarrow C{{e}^{0}}=0 \\
& \Rightarrow C=0 \\
\end{align}$
Then the function becomes $y\left( x \right)=\left\{ \begin{matrix}
\dfrac{1}{2}-c{{e}^{-2x}},\text{ }x\in \left( 0,1 \right) \\
0,\text{ otherwise} \\
\end{matrix} \right.$
As we are asked to find the value of $y\left( \dfrac{3}{2} \right)$, let us substitute the value $x=\dfrac{3}{2}$ in the above function $y\left( x \right)$.
As $\dfrac{3}{2}\notin \left( 0,1 \right)$, value of $y\left( \dfrac{3}{2} \right)$ is 0.
Hence, we get the value of $y\left( \dfrac{3}{2} \right)$ as 0.
Hence, the answer is 0.
Note: The main mistake one does is one might not check that when we are given x=0, it does not belong to the interval (0,1) and take the value of function as $y\left( x \right)=\dfrac{1}{2}+c{{e}^{-2x}}$ and find the value of c and then find the value of $y\left( \dfrac{3}{2} \right)$. But it is wrong. Here we need to consider the function when x does not belong to (0,1).
Complete step-by-step answer:
Let us consider the given differential equation $\dfrac{dy}{dx}+2y=f\left( x \right)$.
As we see, it is in the form of $\dfrac{dy}{dx}+yP\left( x \right)=Q\left( x \right)$.
If any differential equation is of the above form then we multiply it with an integrating factor which is given by
$I.F={{e}^{\int{P\left( x \right)dx}}}$
Then we solve the differential equation as
$y\times \left( I.F \right)=y{{e}^{\int{P\left( x \right)dx}}}=\int{{{e}^{\int{P\left( x \right)dx}}}Q\left( x \right)}dx=\int{\left( I.F \right)\times Q\left( x \right)}dx$
Here, by comparing the given differential equation with the above form of differential equation we can say that,
$P\left( x \right)=2$ and $Q\left( x \right)=f\left( x \right)$
So, now let us find the integrating factor for our given differential equation,
$\begin{align}
& \Rightarrow I.F={{e}^{\int{2dx}}} \\
& \Rightarrow I.F={{e}^{2\int{dx}}} \\
& \Rightarrow I.F={{e}^{2x}} \\
\end{align}$
So, we get the solution of the differential equation as
$y{{e}^{2x}}=\int{{{e}^{2x}}f\left( x \right)dx}$
As we are given that $f\left( x \right)=\left\{ \begin{matrix}
1,\text{ }x\in \left( 0,1 \right) \\
0,\text{ otherwise} \\
\end{matrix} \right.$, let us substitute the value of $f\left( x \right)$ in the above solution of differential equation.
When $x\in \left( 0,1 \right)$
$\begin{align}
& \Rightarrow y{{e}^{2x}}=\int{{{e}^{2x}}\times 1dx} \\
& \Rightarrow y{{e}^{2x}}=\int{{{e}^{2x}}dx} \\
\end{align}$
Now let us consider the formula $\int{{{e}^{ax}}dx}=\dfrac{{{e}^{ax}}}{a}+c$. Using this we can write the above equation as,
$\Rightarrow y{{e}^{2x}}=\dfrac{{{e}^{2x}}}{2}+c$
Now let us divide the above equation with ${{e}^{2x}}$.
$\Rightarrow y=\dfrac{1}{2}+c{{e}^{-2x}}$
As, we are given that $y=y\left( x \right)$ we can substitute it in the above equation.
$\Rightarrow y\left( x \right)=\dfrac{1}{2}+c{{e}^{-2x}}$
So, we get the value of $y\left( x \right)$ in the interval $x\in \left( 0,1 \right)$ as $y\left( x \right)=\dfrac{1}{2}+c{{e}^{-2x}}$.
When $x\notin \left( 0,1 \right)$
$\begin{align}
& \Rightarrow y{{e}^{2x}}=\int{{{e}^{2x}}\times 0dx} \\
& \Rightarrow y{{e}^{2x}}=\int{0dx} \\
\end{align}$
Now let us consider the formula $\int{0dx}=\text{constant}$. Using this we can write the above equation as,
$\begin{align}
& \Rightarrow y{{e}^{2x}}=C \\
& \Rightarrow y=C{{e}^{-2x}} \\
\end{align}$
So, we get the function $y\left( x \right)$ as
$y\left( x \right)=\left\{ \begin{matrix}
\dfrac{1}{2}-c{{e}^{-2x}},\text{ }x\in \left( 0,1 \right) \\
C{{e}^{-2x}},\text{ otherwise} \\
\end{matrix} \right.$
We are given that $y\left( 0 \right)=0$.
When $x=0$ the function is $y\left( x \right)=C{{e}^{-2x}}$. So, substituting the value $x=0$, we get
$\begin{align}
& \Rightarrow y\left( 0 \right)=0=C{{e}^{-2\left( 0 \right)}} \\
& \Rightarrow C{{e}^{0}}=0 \\
& \Rightarrow C=0 \\
\end{align}$
Then the function becomes $y\left( x \right)=\left\{ \begin{matrix}
\dfrac{1}{2}-c{{e}^{-2x}},\text{ }x\in \left( 0,1 \right) \\
0,\text{ otherwise} \\
\end{matrix} \right.$
As we are asked to find the value of $y\left( \dfrac{3}{2} \right)$, let us substitute the value $x=\dfrac{3}{2}$ in the above function $y\left( x \right)$.
As $\dfrac{3}{2}\notin \left( 0,1 \right)$, value of $y\left( \dfrac{3}{2} \right)$ is 0.
Hence, we get the value of $y\left( \dfrac{3}{2} \right)$ as 0.
Hence, the answer is 0.
Note: The main mistake one does is one might not check that when we are given x=0, it does not belong to the interval (0,1) and take the value of function as $y\left( x \right)=\dfrac{1}{2}+c{{e}^{-2x}}$ and find the value of c and then find the value of $y\left( \dfrac{3}{2} \right)$. But it is wrong. Here we need to consider the function when x does not belong to (0,1).
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

