
Let $y=y\left( x \right)$ be the solution of the differential equation $\dfrac{dy}{dx}+2y=f\left( x \right)$, where $f\left( x \right)=\left\{ \begin{matrix}
1,\text{ }x\in \left( 0,1 \right) \\
0,\text{ otherwise} \\
\end{matrix} \right.$
If $y\left( 0 \right)=0$ then $y\left( \dfrac{3}{2} \right)$ is
Answer
588.3k+ views
Hint: We solve this question by first comparing the given differential equation with $\dfrac{dy}{dx}+yP\left( x \right)=Q\left( x \right)$. Then we solve it by multiplying the equation with integrating factor by finding the integrating factor using the formula $I.F={{e}^{\int{P\left( x \right)dx}}}$. Then we solve the differential equation and find the values of the function $y=y\left( x \right)$ when $x\in \left( 0,1 \right)$ and when $x\notin \left( 0,1 \right)$. Then we substitute the value $x=0$ in $y\left( x \right)$ to find the value of function. Then we substitute the value $x=\dfrac{3}{2}$ in $y\left( x \right)$ to find the value $y\left( \dfrac{3}{2} \right)$.
Complete step-by-step answer:
Let us consider the given differential equation $\dfrac{dy}{dx}+2y=f\left( x \right)$.
As we see, it is in the form of $\dfrac{dy}{dx}+yP\left( x \right)=Q\left( x \right)$.
If any differential equation is of the above form then we multiply it with an integrating factor which is given by
$I.F={{e}^{\int{P\left( x \right)dx}}}$
Then we solve the differential equation as
$y\times \left( I.F \right)=y{{e}^{\int{P\left( x \right)dx}}}=\int{{{e}^{\int{P\left( x \right)dx}}}Q\left( x \right)}dx=\int{\left( I.F \right)\times Q\left( x \right)}dx$
Here, by comparing the given differential equation with the above form of differential equation we can say that,
$P\left( x \right)=2$ and $Q\left( x \right)=f\left( x \right)$
So, now let us find the integrating factor for our given differential equation,
$\begin{align}
& \Rightarrow I.F={{e}^{\int{2dx}}} \\
& \Rightarrow I.F={{e}^{2\int{dx}}} \\
& \Rightarrow I.F={{e}^{2x}} \\
\end{align}$
So, we get the solution of the differential equation as
$y{{e}^{2x}}=\int{{{e}^{2x}}f\left( x \right)dx}$
As we are given that $f\left( x \right)=\left\{ \begin{matrix}
1,\text{ }x\in \left( 0,1 \right) \\
0,\text{ otherwise} \\
\end{matrix} \right.$, let us substitute the value of $f\left( x \right)$ in the above solution of differential equation.
When $x\in \left( 0,1 \right)$
$\begin{align}
& \Rightarrow y{{e}^{2x}}=\int{{{e}^{2x}}\times 1dx} \\
& \Rightarrow y{{e}^{2x}}=\int{{{e}^{2x}}dx} \\
\end{align}$
Now let us consider the formula $\int{{{e}^{ax}}dx}=\dfrac{{{e}^{ax}}}{a}+c$. Using this we can write the above equation as,
$\Rightarrow y{{e}^{2x}}=\dfrac{{{e}^{2x}}}{2}+c$
Now let us divide the above equation with ${{e}^{2x}}$.
$\Rightarrow y=\dfrac{1}{2}+c{{e}^{-2x}}$
As, we are given that $y=y\left( x \right)$ we can substitute it in the above equation.
$\Rightarrow y\left( x \right)=\dfrac{1}{2}+c{{e}^{-2x}}$
So, we get the value of $y\left( x \right)$ in the interval $x\in \left( 0,1 \right)$ as $y\left( x \right)=\dfrac{1}{2}+c{{e}^{-2x}}$.
When $x\notin \left( 0,1 \right)$
$\begin{align}
& \Rightarrow y{{e}^{2x}}=\int{{{e}^{2x}}\times 0dx} \\
& \Rightarrow y{{e}^{2x}}=\int{0dx} \\
\end{align}$
Now let us consider the formula $\int{0dx}=\text{constant}$. Using this we can write the above equation as,
$\begin{align}
& \Rightarrow y{{e}^{2x}}=C \\
& \Rightarrow y=C{{e}^{-2x}} \\
\end{align}$
So, we get the function $y\left( x \right)$ as
$y\left( x \right)=\left\{ \begin{matrix}
\dfrac{1}{2}-c{{e}^{-2x}},\text{ }x\in \left( 0,1 \right) \\
C{{e}^{-2x}},\text{ otherwise} \\
\end{matrix} \right.$
We are given that $y\left( 0 \right)=0$.
When $x=0$ the function is $y\left( x \right)=C{{e}^{-2x}}$. So, substituting the value $x=0$, we get
$\begin{align}
& \Rightarrow y\left( 0 \right)=0=C{{e}^{-2\left( 0 \right)}} \\
& \Rightarrow C{{e}^{0}}=0 \\
& \Rightarrow C=0 \\
\end{align}$
Then the function becomes $y\left( x \right)=\left\{ \begin{matrix}
\dfrac{1}{2}-c{{e}^{-2x}},\text{ }x\in \left( 0,1 \right) \\
0,\text{ otherwise} \\
\end{matrix} \right.$
As we are asked to find the value of $y\left( \dfrac{3}{2} \right)$, let us substitute the value $x=\dfrac{3}{2}$ in the above function $y\left( x \right)$.
As $\dfrac{3}{2}\notin \left( 0,1 \right)$, value of $y\left( \dfrac{3}{2} \right)$ is 0.
Hence, we get the value of $y\left( \dfrac{3}{2} \right)$ as 0.
Hence, the answer is 0.
Note: The main mistake one does is one might not check that when we are given x=0, it does not belong to the interval (0,1) and take the value of function as $y\left( x \right)=\dfrac{1}{2}+c{{e}^{-2x}}$ and find the value of c and then find the value of $y\left( \dfrac{3}{2} \right)$. But it is wrong. Here we need to consider the function when x does not belong to (0,1).
Complete step-by-step answer:
Let us consider the given differential equation $\dfrac{dy}{dx}+2y=f\left( x \right)$.
As we see, it is in the form of $\dfrac{dy}{dx}+yP\left( x \right)=Q\left( x \right)$.
If any differential equation is of the above form then we multiply it with an integrating factor which is given by
$I.F={{e}^{\int{P\left( x \right)dx}}}$
Then we solve the differential equation as
$y\times \left( I.F \right)=y{{e}^{\int{P\left( x \right)dx}}}=\int{{{e}^{\int{P\left( x \right)dx}}}Q\left( x \right)}dx=\int{\left( I.F \right)\times Q\left( x \right)}dx$
Here, by comparing the given differential equation with the above form of differential equation we can say that,
$P\left( x \right)=2$ and $Q\left( x \right)=f\left( x \right)$
So, now let us find the integrating factor for our given differential equation,
$\begin{align}
& \Rightarrow I.F={{e}^{\int{2dx}}} \\
& \Rightarrow I.F={{e}^{2\int{dx}}} \\
& \Rightarrow I.F={{e}^{2x}} \\
\end{align}$
So, we get the solution of the differential equation as
$y{{e}^{2x}}=\int{{{e}^{2x}}f\left( x \right)dx}$
As we are given that $f\left( x \right)=\left\{ \begin{matrix}
1,\text{ }x\in \left( 0,1 \right) \\
0,\text{ otherwise} \\
\end{matrix} \right.$, let us substitute the value of $f\left( x \right)$ in the above solution of differential equation.
When $x\in \left( 0,1 \right)$
$\begin{align}
& \Rightarrow y{{e}^{2x}}=\int{{{e}^{2x}}\times 1dx} \\
& \Rightarrow y{{e}^{2x}}=\int{{{e}^{2x}}dx} \\
\end{align}$
Now let us consider the formula $\int{{{e}^{ax}}dx}=\dfrac{{{e}^{ax}}}{a}+c$. Using this we can write the above equation as,
$\Rightarrow y{{e}^{2x}}=\dfrac{{{e}^{2x}}}{2}+c$
Now let us divide the above equation with ${{e}^{2x}}$.
$\Rightarrow y=\dfrac{1}{2}+c{{e}^{-2x}}$
As, we are given that $y=y\left( x \right)$ we can substitute it in the above equation.
$\Rightarrow y\left( x \right)=\dfrac{1}{2}+c{{e}^{-2x}}$
So, we get the value of $y\left( x \right)$ in the interval $x\in \left( 0,1 \right)$ as $y\left( x \right)=\dfrac{1}{2}+c{{e}^{-2x}}$.
When $x\notin \left( 0,1 \right)$
$\begin{align}
& \Rightarrow y{{e}^{2x}}=\int{{{e}^{2x}}\times 0dx} \\
& \Rightarrow y{{e}^{2x}}=\int{0dx} \\
\end{align}$
Now let us consider the formula $\int{0dx}=\text{constant}$. Using this we can write the above equation as,
$\begin{align}
& \Rightarrow y{{e}^{2x}}=C \\
& \Rightarrow y=C{{e}^{-2x}} \\
\end{align}$
So, we get the function $y\left( x \right)$ as
$y\left( x \right)=\left\{ \begin{matrix}
\dfrac{1}{2}-c{{e}^{-2x}},\text{ }x\in \left( 0,1 \right) \\
C{{e}^{-2x}},\text{ otherwise} \\
\end{matrix} \right.$
We are given that $y\left( 0 \right)=0$.
When $x=0$ the function is $y\left( x \right)=C{{e}^{-2x}}$. So, substituting the value $x=0$, we get
$\begin{align}
& \Rightarrow y\left( 0 \right)=0=C{{e}^{-2\left( 0 \right)}} \\
& \Rightarrow C{{e}^{0}}=0 \\
& \Rightarrow C=0 \\
\end{align}$
Then the function becomes $y\left( x \right)=\left\{ \begin{matrix}
\dfrac{1}{2}-c{{e}^{-2x}},\text{ }x\in \left( 0,1 \right) \\
0,\text{ otherwise} \\
\end{matrix} \right.$
As we are asked to find the value of $y\left( \dfrac{3}{2} \right)$, let us substitute the value $x=\dfrac{3}{2}$ in the above function $y\left( x \right)$.
As $\dfrac{3}{2}\notin \left( 0,1 \right)$, value of $y\left( \dfrac{3}{2} \right)$ is 0.
Hence, we get the value of $y\left( \dfrac{3}{2} \right)$ as 0.
Hence, the answer is 0.
Note: The main mistake one does is one might not check that when we are given x=0, it does not belong to the interval (0,1) and take the value of function as $y\left( x \right)=\dfrac{1}{2}+c{{e}^{-2x}}$ and find the value of c and then find the value of $y\left( \dfrac{3}{2} \right)$. But it is wrong. Here we need to consider the function when x does not belong to (0,1).
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

Calculate the equivalent resistance between a and b class 12 physics CBSE

How many states of matter are there in total class 12 chemistry CBSE

Which of the following is the best conductor of electricity class 12 physics CBSE

