
Let $y=f\left( x \right)$ be a function defined parametrically by $x=2t-\left| t-1 \right|$and $y=2{{t}^{2}}+t\left| t \right|$ then $f$ is
A. continuous at x=-1
B. continuous at x=2
C. differentiable at x=1
D. not differentiable at x=2
Answer
604.5k+ views
Hint: First and foremost break x, y in the possible intervals, then gets a relation between them and then find continuity and check differentiability.
Complete step-by-step answer:
In the question, we are given parametric equation of x and y,
$x=2t-\left| t-1 \right|$
$y=2{{t}^{2}}+t\left| t \right|$
Now let’s break or divide the values of x and y in intervals given below,
$\begin{align}
& x=2t-(1-t),t<0 \\
& x=3t-1,t<0 \\
& \\
& x=2t-(1-t),0\le t\le 1 \\
& x=3t-1,0\le t\le 1 \\
& \\
& x=2t-(t-1),t>1 \\
& x=t+1,t>1 \\
& \\
& y=2{{t}^{2}}-{{t}^{2}},t<0 \\
& y={{t}^{2}},t<0 \\
& \\
& y=2{{t}^{2}}+{{t}^{2}},0\le t\le 1 \\
& y=3{{t}^{2}},0\le t\le 1 \\
& \\
& y=2{{t}^{2}}+{{t}^{2}},t>1 \\
& y=3{{t}^{2}},t>1 \\
\end{align}$
So now considering the intervals we will find the relation of x and y in the above interval,
For $t<0$,
$\begin{align}
& x=3t-1 \\
& \Rightarrow t=\dfrac{x+1}{3} \\
& y={{t}^{2}}={{\left( \dfrac{x+1}{3} \right)}^{2}}=\dfrac{{{\left( x+1 \right)}^{2}}}{9} \\
\end{align}$
For $0\le t\le 1$,
$\begin{align}
& x=3t-1 \\
& \Rightarrow t=\dfrac{x+1}{3} \\
& y=3{{t}^{2}}=3{{\left( \dfrac{x+1}{3} \right)}^{2}}=\dfrac{{{\left( x+1 \right)}^{2}}}{3} \\
\end{align}$
For $t>1$,
$\begin{align}
& x=t+1 \\
& \Rightarrow t=x-1 \\
& y=3{{t}^{2}}=3{{\left( x-1 \right)}^{2}} \\
\end{align}$
Now summarizing the equation of y and x,
We get,
\[y=\dfrac{{{\left( x+1 \right)}^{2}}}{9}\] for $x<-1$ (or $t>0$).
\[y=\dfrac{{{\left( x+1 \right)}^{2}}}{3}\] for $-1\le x\le 2$ (or $0\le t\le 1$).
$y=3{{\left( x-1 \right)}^{2}}$ for $x>2$ (or $t>1$).
Now consider the point at $x=-1$.
We will find left hand limit of y,
So,
$\begin{align}
& x=-{{1}^{-}} \\
& y=\dfrac{{{\left( x+1 \right)}^{2}}}{9}=0 \\
\end{align}$
So the left hand limit is 0.
We will find right hand limit of y,
So,
$\begin{align}
& x=-{{1}^{+}} \\
& y=\dfrac{{{\left( x+1 \right)}^{2}}}{3}=0 \\
\end{align}$
So the right hand limit is 0.
Now consider the point at $x=2$,
We will find Right hand limit of y,
So,
$\begin{align}
& x\to {{2}^{+}} \\
& y=3{{\left( x-1 \right)}^{2}}=3\times {{1}^{2}}=3 \\
\end{align}$
We will find left hand limit of y,
So,
$\begin{align}
& x\to {{2}^{-}} \\
& y=\dfrac{{{\left( x+1 \right)}^{2}}}{3}=\dfrac{{{3}^{2}}}{3}=3 \\
\end{align}$
So in the cases of $x=-1$and $x=2$, both the left hand limit and right hand limit are the same.
Here y is continuous at -1 and 2.
At \[x=1\],
We will directly tell that it is continuous and differentiable as it is a polynomial function and unlike the other two points where we had to consider two polynomial functions.
As we already checked the continuity of $x=2$, we will check its left and right hand derivative.
So,
$\begin{align}
& x={{2}^{-}} \\
& y=\dfrac{{{\left( x+1 \right)}^{2}}}{3} \\
& y'=\dfrac{2{{\left( x+1 \right)}^{2}}}{3}=\dfrac{2\left( 2+1 \right)}{3}=2 \\
\end{align}$
Here the left hand derivative is 2.
So, at $x={{2}^{+}}$
$\begin{align}
& y=3{{\left( x-1 \right)}^{2}} \\
& y'=6\left( x-1 \right)=6(2-1)=6 \\
\end{align}$
Here the right hand derivative is 6.
Note: In these types of problems students always have problems finding left hand and right hand derivatives and limits. They make mistakes in left hand limit and right hand limit calculation.
Complete step-by-step answer:
In the question, we are given parametric equation of x and y,
$x=2t-\left| t-1 \right|$
$y=2{{t}^{2}}+t\left| t \right|$
Now let’s break or divide the values of x and y in intervals given below,
$\begin{align}
& x=2t-(1-t),t<0 \\
& x=3t-1,t<0 \\
& \\
& x=2t-(1-t),0\le t\le 1 \\
& x=3t-1,0\le t\le 1 \\
& \\
& x=2t-(t-1),t>1 \\
& x=t+1,t>1 \\
& \\
& y=2{{t}^{2}}-{{t}^{2}},t<0 \\
& y={{t}^{2}},t<0 \\
& \\
& y=2{{t}^{2}}+{{t}^{2}},0\le t\le 1 \\
& y=3{{t}^{2}},0\le t\le 1 \\
& \\
& y=2{{t}^{2}}+{{t}^{2}},t>1 \\
& y=3{{t}^{2}},t>1 \\
\end{align}$
So now considering the intervals we will find the relation of x and y in the above interval,
For $t<0$,
$\begin{align}
& x=3t-1 \\
& \Rightarrow t=\dfrac{x+1}{3} \\
& y={{t}^{2}}={{\left( \dfrac{x+1}{3} \right)}^{2}}=\dfrac{{{\left( x+1 \right)}^{2}}}{9} \\
\end{align}$
For $0\le t\le 1$,
$\begin{align}
& x=3t-1 \\
& \Rightarrow t=\dfrac{x+1}{3} \\
& y=3{{t}^{2}}=3{{\left( \dfrac{x+1}{3} \right)}^{2}}=\dfrac{{{\left( x+1 \right)}^{2}}}{3} \\
\end{align}$
For $t>1$,
$\begin{align}
& x=t+1 \\
& \Rightarrow t=x-1 \\
& y=3{{t}^{2}}=3{{\left( x-1 \right)}^{2}} \\
\end{align}$
Now summarizing the equation of y and x,
We get,
\[y=\dfrac{{{\left( x+1 \right)}^{2}}}{9}\] for $x<-1$ (or $t>0$).
\[y=\dfrac{{{\left( x+1 \right)}^{2}}}{3}\] for $-1\le x\le 2$ (or $0\le t\le 1$).
$y=3{{\left( x-1 \right)}^{2}}$ for $x>2$ (or $t>1$).
Now consider the point at $x=-1$.
We will find left hand limit of y,
So,
$\begin{align}
& x=-{{1}^{-}} \\
& y=\dfrac{{{\left( x+1 \right)}^{2}}}{9}=0 \\
\end{align}$
So the left hand limit is 0.
We will find right hand limit of y,
So,
$\begin{align}
& x=-{{1}^{+}} \\
& y=\dfrac{{{\left( x+1 \right)}^{2}}}{3}=0 \\
\end{align}$
So the right hand limit is 0.
Now consider the point at $x=2$,
We will find Right hand limit of y,
So,
$\begin{align}
& x\to {{2}^{+}} \\
& y=3{{\left( x-1 \right)}^{2}}=3\times {{1}^{2}}=3 \\
\end{align}$
We will find left hand limit of y,
So,
$\begin{align}
& x\to {{2}^{-}} \\
& y=\dfrac{{{\left( x+1 \right)}^{2}}}{3}=\dfrac{{{3}^{2}}}{3}=3 \\
\end{align}$
So in the cases of $x=-1$and $x=2$, both the left hand limit and right hand limit are the same.
Here y is continuous at -1 and 2.
At \[x=1\],
We will directly tell that it is continuous and differentiable as it is a polynomial function and unlike the other two points where we had to consider two polynomial functions.
As we already checked the continuity of $x=2$, we will check its left and right hand derivative.
So,
$\begin{align}
& x={{2}^{-}} \\
& y=\dfrac{{{\left( x+1 \right)}^{2}}}{3} \\
& y'=\dfrac{2{{\left( x+1 \right)}^{2}}}{3}=\dfrac{2\left( 2+1 \right)}{3}=2 \\
\end{align}$
Here the left hand derivative is 2.
So, at $x={{2}^{+}}$
$\begin{align}
& y=3{{\left( x-1 \right)}^{2}} \\
& y'=6\left( x-1 \right)=6(2-1)=6 \\
\end{align}$
Here the right hand derivative is 6.
Note: In these types of problems students always have problems finding left hand and right hand derivatives and limits. They make mistakes in left hand limit and right hand limit calculation.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

