# Let \[y=\cos \text{ }hx=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}\]. Find the value of \[\dfrac{dy}{dx}\].

Last updated date: 26th Mar 2023

•

Total views: 310.5k

•

Views today: 3.87k

Answer

Verified

310.5k+ views

Hint: The derivative of the function \[{{e}^{ax}}\] is given as \[\dfrac{d({{e}^{ax}})}{dx}=a.{{e}^{ax}}\] .

We are given \[y=\cos \text{ }hx=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}\], which is a hyperbolic function , and we need to find the derivative of the given function .

We will differentiate the given hyperbolic function with respect to \[x\].

On differentiating the given hyperbolic function with respect to \[x\], we get

\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left( \cos \text{ }hx \right)\]

\[=\dfrac{d}{dx}\left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right)\]

\[=\dfrac{d}{dx}(\dfrac{{{e}^{x}}}{2})+\dfrac{d}{dx}(\dfrac{{{e}^{-x}}}{2})..........\]equation\[(1)\].

Now , to find the derivative of the function , first we need to find the derivative of \[{{e}^{x}}\]and \[{{e}^{-x}}\] with respect to \[x\] .

We already know that the derivative of \[{{e}^{ax}}\]is \[\dfrac{d}{dx}{{e}^{ax}}=a.{{e}^{ax}}\]

So , the derivative of \[{{e}^{-x}}\] with respect to \[x\]can be calculated as \[\dfrac{d}{dx}{{e}^{-x}}=-1.{{e}^{-x}}=-{{e}^{-x}}\].

And , the derivative of \[{{e}^{x}}\] with respect to \[x\] can be calculated as \[\dfrac{d}{dx}{{e}^{x}}=1.{{e}^{x}}={{e}^{x}}\]

Now , to evaluate the derivative of the function , we will substitute the values of \[\dfrac{d}{dx}{{e}^{-x}}\] and \[\dfrac{d}{dx}{{e}^{x}}\] in equation\[(1)\].

On substituting the values of \[\dfrac{d}{dx}{{e}^{-x}}\] and \[\dfrac{d}{dx}{{e}^{x}}\] in equation\[(1)\], we get

\[\dfrac{dy}{dx}=\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}\]

But we know that \[\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}\] is the expansion of a hyperbolic function , \[\sinh x\].

So , we can write the value of the derivative of the function \[y\] as \[\dfrac{dy}{dx}=\sinh x\].

Hence , the value of the derivative of the hyperbolic function \[y=\cos \text{ }hx=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}\] is given as \[\dfrac{dy}{dx}=\sinh x\].

Note: Remember the expansion of \[\sin \text{ }hx\] is \[\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}\]. Also remember that \[\dfrac{d}{dx}\left( \text{cos }hx \right)=\sin \text{ }hx\]and not \[-\sinh x\] . Students generally get confused and end up getting a wrong answer . Hence , such mistakes should be avoided .

We are given \[y=\cos \text{ }hx=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}\], which is a hyperbolic function , and we need to find the derivative of the given function .

We will differentiate the given hyperbolic function with respect to \[x\].

On differentiating the given hyperbolic function with respect to \[x\], we get

\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left( \cos \text{ }hx \right)\]

\[=\dfrac{d}{dx}\left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right)\]

\[=\dfrac{d}{dx}(\dfrac{{{e}^{x}}}{2})+\dfrac{d}{dx}(\dfrac{{{e}^{-x}}}{2})..........\]equation\[(1)\].

Now , to find the derivative of the function , first we need to find the derivative of \[{{e}^{x}}\]and \[{{e}^{-x}}\] with respect to \[x\] .

We already know that the derivative of \[{{e}^{ax}}\]is \[\dfrac{d}{dx}{{e}^{ax}}=a.{{e}^{ax}}\]

So , the derivative of \[{{e}^{-x}}\] with respect to \[x\]can be calculated as \[\dfrac{d}{dx}{{e}^{-x}}=-1.{{e}^{-x}}=-{{e}^{-x}}\].

And , the derivative of \[{{e}^{x}}\] with respect to \[x\] can be calculated as \[\dfrac{d}{dx}{{e}^{x}}=1.{{e}^{x}}={{e}^{x}}\]

Now , to evaluate the derivative of the function , we will substitute the values of \[\dfrac{d}{dx}{{e}^{-x}}\] and \[\dfrac{d}{dx}{{e}^{x}}\] in equation\[(1)\].

On substituting the values of \[\dfrac{d}{dx}{{e}^{-x}}\] and \[\dfrac{d}{dx}{{e}^{x}}\] in equation\[(1)\], we get

\[\dfrac{dy}{dx}=\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}\]

But we know that \[\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}\] is the expansion of a hyperbolic function , \[\sinh x\].

So , we can write the value of the derivative of the function \[y\] as \[\dfrac{dy}{dx}=\sinh x\].

Hence , the value of the derivative of the hyperbolic function \[y=\cos \text{ }hx=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}\] is given as \[\dfrac{dy}{dx}=\sinh x\].

Note: Remember the expansion of \[\sin \text{ }hx\] is \[\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}\]. Also remember that \[\dfrac{d}{dx}\left( \text{cos }hx \right)=\sin \text{ }hx\]and not \[-\sinh x\] . Students generally get confused and end up getting a wrong answer . Hence , such mistakes should be avoided .

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE