
Let $ X={{\left( ^{10}{{C}_{1}} \right)}^{2}}+{{\left( ^{10}{{C}_{1}} \right)}^{2}}+3{{\left( ^{10}{{C}_{1}} \right)}^{2}}...+10{{\left( ^{10}{{C}_{1}} \right)}^{2}}$, where $^{10}{{C}_{r}},r=\{1,2,3,...,10\}$ denote binomial coefficients .Then find the value of $\dfrac{1}{1430}X$.
Answer
574.5k+ views
Hint: Convert the given expression to generalized form to apply the standard formula of $^{2n-1}{{C}_{n-1}}$. Then make the given data a specialized case of this to find out the required value.
Complete step-by-step answer:
The given expression can written in generalized form $X={{\sum\limits_{r=0}^{n}{r\left( ^{n}{{C}_{r}} \right)}}^{2}}=\sum\limits_{r=0}^{n}{r\left( ^{n}{{C}_{r}} \right)}\left( ^{n}{{C}_{r}} \right)$.
We can replace $^{n}{{C}_{r}}=\dfrac{n}{r}\left( ^{n-1}{{C}_{r-1}} \right)$ . Now the expression transforms to
$\begin{align}
& X={{\sum\limits_{r=0}^{n}{r\left( ^{n}{{C}_{r}} \right)}}^{2}} \\
& \Rightarrow X=\sum\limits_{r=0}^{n}{r}\left( ^{n}{{C}_{r}} \right)\left( ^{n}{{C}_{r}} \right) \\
& \Rightarrow X=\sum\limits_{r=0}^{n}{r\left( ^{n}{{C}_{r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right)\left( \dfrac{n}{r} \right) \\
& \Rightarrow X=n\sum\limits_{r=0}^{n}{\left( ^{n}{{C}_{r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right) \\
\end{align}$\[\]
We use the fact that $^{n}{{C}_{r}}{{=}^{n}}{{C}_{n-r}}$\[\]
We also know from theory of binomial expansion that $\sum\limits_{r=0}^{n}{\left( ^{n}{{C}_{n-r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right){{=}^{2n-1}}{{C}_{n-1}}$. Putting it in above equation \[\]
$\begin{align}
& X=n\sum\limits_{r=0}^{n}{\left( ^{n}{{C}_{r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right) \\
& \Rightarrow X=n\sum\limits_{r=0}^{n}{\left( ^{n}{{C}_{n-r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right) \\
& \Rightarrow X=n\left( ^{2n-1}{{C}_{n-1}} \right) \\
\end{align}$\[\]
Now we apply for the special case as asked in the question . So
\[X=10\cdot \left( ^{20-1}{{C}_{10-1}} \right)=10\left( ^{19}{{C}_{10}} \right)\]
We have been asked to find out the value of $\dfrac{1}{1430}X$. So we first factorize 1430 as $1430=10.11.13$. Using this obtained value to substitute in the above equation.
\[\dfrac{1}{1430}X=10\dfrac{19\times 18\times ...11}{9\times 8\times ...2\times 10\times 11\times 13}=646\]
The required value is 646.\[\]
Note: We need to be careful of wrong substitution as it may lead to incorrect results. We need to be also careful of the fact that the question is asking the values of $\dfrac{1}{1430}X$ not $X$. So do not end the solution at $X$ .
Complete step-by-step answer:
The given expression can written in generalized form $X={{\sum\limits_{r=0}^{n}{r\left( ^{n}{{C}_{r}} \right)}}^{2}}=\sum\limits_{r=0}^{n}{r\left( ^{n}{{C}_{r}} \right)}\left( ^{n}{{C}_{r}} \right)$.
We can replace $^{n}{{C}_{r}}=\dfrac{n}{r}\left( ^{n-1}{{C}_{r-1}} \right)$ . Now the expression transforms to
$\begin{align}
& X={{\sum\limits_{r=0}^{n}{r\left( ^{n}{{C}_{r}} \right)}}^{2}} \\
& \Rightarrow X=\sum\limits_{r=0}^{n}{r}\left( ^{n}{{C}_{r}} \right)\left( ^{n}{{C}_{r}} \right) \\
& \Rightarrow X=\sum\limits_{r=0}^{n}{r\left( ^{n}{{C}_{r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right)\left( \dfrac{n}{r} \right) \\
& \Rightarrow X=n\sum\limits_{r=0}^{n}{\left( ^{n}{{C}_{r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right) \\
\end{align}$\[\]
We use the fact that $^{n}{{C}_{r}}{{=}^{n}}{{C}_{n-r}}$\[\]
We also know from theory of binomial expansion that $\sum\limits_{r=0}^{n}{\left( ^{n}{{C}_{n-r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right){{=}^{2n-1}}{{C}_{n-1}}$. Putting it in above equation \[\]
$\begin{align}
& X=n\sum\limits_{r=0}^{n}{\left( ^{n}{{C}_{r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right) \\
& \Rightarrow X=n\sum\limits_{r=0}^{n}{\left( ^{n}{{C}_{n-r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right) \\
& \Rightarrow X=n\left( ^{2n-1}{{C}_{n-1}} \right) \\
\end{align}$\[\]
Now we apply for the special case as asked in the question . So
\[X=10\cdot \left( ^{20-1}{{C}_{10-1}} \right)=10\left( ^{19}{{C}_{10}} \right)\]
We have been asked to find out the value of $\dfrac{1}{1430}X$. So we first factorize 1430 as $1430=10.11.13$. Using this obtained value to substitute in the above equation.
\[\dfrac{1}{1430}X=10\dfrac{19\times 18\times ...11}{9\times 8\times ...2\times 10\times 11\times 13}=646\]
The required value is 646.\[\]
Note: We need to be careful of wrong substitution as it may lead to incorrect results. We need to be also careful of the fact that the question is asking the values of $\dfrac{1}{1430}X$ not $X$. So do not end the solution at $X$ .
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

