
Let $ X={{\left( ^{10}{{C}_{1}} \right)}^{2}}+{{\left( ^{10}{{C}_{1}} \right)}^{2}}+3{{\left( ^{10}{{C}_{1}} \right)}^{2}}...+10{{\left( ^{10}{{C}_{1}} \right)}^{2}}$, where $^{10}{{C}_{r}},r=\{1,2,3,...,10\}$ denote binomial coefficients .Then find the value of $\dfrac{1}{1430}X$.
Answer
511.2k+ views
Hint: Convert the given expression to generalized form to apply the standard formula of $^{2n-1}{{C}_{n-1}}$. Then make the given data a specialized case of this to find out the required value.
Complete step-by-step answer:
The given expression can written in generalized form $X={{\sum\limits_{r=0}^{n}{r\left( ^{n}{{C}_{r}} \right)}}^{2}}=\sum\limits_{r=0}^{n}{r\left( ^{n}{{C}_{r}} \right)}\left( ^{n}{{C}_{r}} \right)$.
We can replace $^{n}{{C}_{r}}=\dfrac{n}{r}\left( ^{n-1}{{C}_{r-1}} \right)$ . Now the expression transforms to
$\begin{align}
& X={{\sum\limits_{r=0}^{n}{r\left( ^{n}{{C}_{r}} \right)}}^{2}} \\
& \Rightarrow X=\sum\limits_{r=0}^{n}{r}\left( ^{n}{{C}_{r}} \right)\left( ^{n}{{C}_{r}} \right) \\
& \Rightarrow X=\sum\limits_{r=0}^{n}{r\left( ^{n}{{C}_{r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right)\left( \dfrac{n}{r} \right) \\
& \Rightarrow X=n\sum\limits_{r=0}^{n}{\left( ^{n}{{C}_{r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right) \\
\end{align}$\[\]
We use the fact that $^{n}{{C}_{r}}{{=}^{n}}{{C}_{n-r}}$\[\]
We also know from theory of binomial expansion that $\sum\limits_{r=0}^{n}{\left( ^{n}{{C}_{n-r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right){{=}^{2n-1}}{{C}_{n-1}}$. Putting it in above equation \[\]
$\begin{align}
& X=n\sum\limits_{r=0}^{n}{\left( ^{n}{{C}_{r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right) \\
& \Rightarrow X=n\sum\limits_{r=0}^{n}{\left( ^{n}{{C}_{n-r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right) \\
& \Rightarrow X=n\left( ^{2n-1}{{C}_{n-1}} \right) \\
\end{align}$\[\]
Now we apply for the special case as asked in the question . So
\[X=10\cdot \left( ^{20-1}{{C}_{10-1}} \right)=10\left( ^{19}{{C}_{10}} \right)\]
We have been asked to find out the value of $\dfrac{1}{1430}X$. So we first factorize 1430 as $1430=10.11.13$. Using this obtained value to substitute in the above equation.
\[\dfrac{1}{1430}X=10\dfrac{19\times 18\times ...11}{9\times 8\times ...2\times 10\times 11\times 13}=646\]
The required value is 646.\[\]
Note: We need to be careful of wrong substitution as it may lead to incorrect results. We need to be also careful of the fact that the question is asking the values of $\dfrac{1}{1430}X$ not $X$. So do not end the solution at $X$ .
Complete step-by-step answer:
The given expression can written in generalized form $X={{\sum\limits_{r=0}^{n}{r\left( ^{n}{{C}_{r}} \right)}}^{2}}=\sum\limits_{r=0}^{n}{r\left( ^{n}{{C}_{r}} \right)}\left( ^{n}{{C}_{r}} \right)$.
We can replace $^{n}{{C}_{r}}=\dfrac{n}{r}\left( ^{n-1}{{C}_{r-1}} \right)$ . Now the expression transforms to
$\begin{align}
& X={{\sum\limits_{r=0}^{n}{r\left( ^{n}{{C}_{r}} \right)}}^{2}} \\
& \Rightarrow X=\sum\limits_{r=0}^{n}{r}\left( ^{n}{{C}_{r}} \right)\left( ^{n}{{C}_{r}} \right) \\
& \Rightarrow X=\sum\limits_{r=0}^{n}{r\left( ^{n}{{C}_{r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right)\left( \dfrac{n}{r} \right) \\
& \Rightarrow X=n\sum\limits_{r=0}^{n}{\left( ^{n}{{C}_{r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right) \\
\end{align}$\[\]
We use the fact that $^{n}{{C}_{r}}{{=}^{n}}{{C}_{n-r}}$\[\]
We also know from theory of binomial expansion that $\sum\limits_{r=0}^{n}{\left( ^{n}{{C}_{n-r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right){{=}^{2n-1}}{{C}_{n-1}}$. Putting it in above equation \[\]
$\begin{align}
& X=n\sum\limits_{r=0}^{n}{\left( ^{n}{{C}_{r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right) \\
& \Rightarrow X=n\sum\limits_{r=0}^{n}{\left( ^{n}{{C}_{n-r}} \right)}\left( ^{n-1}{{C}_{r-1}} \right) \\
& \Rightarrow X=n\left( ^{2n-1}{{C}_{n-1}} \right) \\
\end{align}$\[\]
Now we apply for the special case as asked in the question . So
\[X=10\cdot \left( ^{20-1}{{C}_{10-1}} \right)=10\left( ^{19}{{C}_{10}} \right)\]
We have been asked to find out the value of $\dfrac{1}{1430}X$. So we first factorize 1430 as $1430=10.11.13$. Using this obtained value to substitute in the above equation.
\[\dfrac{1}{1430}X=10\dfrac{19\times 18\times ...11}{9\times 8\times ...2\times 10\times 11\times 13}=646\]
The required value is 646.\[\]
Note: We need to be careful of wrong substitution as it may lead to incorrect results. We need to be also careful of the fact that the question is asking the values of $\dfrac{1}{1430}X$ not $X$. So do not end the solution at $X$ .
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Derive an expression for electric potential at point class 12 physics CBSE
