
Let X be a set with exactly 5 elements and let Y be a set with exactly 7 elements. If $\alpha $
is the number of one-one functions from X to Y and $\beta $ is the number of onto functions from Y to X, then the value of $\dfrac{1}{51}\left( \alpha -\beta \right)$ is
Answer
606k+ views
Hint: Use the fact that if m be the number of elements in a set X and n be the number of elements in a set
Y, and if $n\ge m$, then the number of one-one functions from X to Y is given by the formula
$\dfrac{n!}{\left( n-m \right)!}$. Further use the fact that the total number of onto functions from a set X with m elements and another set Y with n elements, such that $m\ge n$ is given by the sum $\sum\limits_{k=0}^{n}{-{{1}^{k}}}\left( \begin{matrix} n \\ k \\
\end{matrix} \right){{\left( n-k \right)}^{m}}$. . These values of $\alpha $ and $\beta $ can then be used to calculate the required value of $\dfrac{1}{51}\left( \alpha -\beta \right)$.
Complete step by step solution:
For mapping functions from set X having 5 elements to set Y having 7 elements, these functions can be
either one-one or many-one. The total number of one-one functions can be calculated using the formula
$\dfrac{n!}{\left( n-m \right)!}$, where n is the number of elements in Y and m is the number of elements
in X.
Thus, for the given question, $m=5$ and $n=7$. Using these values in the formula, we get
$\begin{align}
& \alpha =\dfrac{7!}{\left( 7-5 \right)!} \\
& \Rightarrow \alpha =\dfrac{7!}{2!} \\
& \Rightarrow \alpha =7\times 6\times 5\times 4\times 3 \\
& \Rightarrow \alpha =2520 \\
\end{align}$
Thus, the required value of $\alpha $ is 2520.
For the calculation of $\beta $, consider the mapping of functions from Y to X. The total number of onto
functions from a set Y having m elements to another set X having n elements, where $m\ge n$ is given by
the formula $\sum\limits_{k=0}^{n}{-{{1}^{k}}}\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{\left( n-k \right)}^{m}}$.
Thus, we calculate this sum with \[m=7\] and \[n=5\] as
$\begin{align}
& \beta =\sum\limits_{k=0}^{5}{{{\left( -1 \right)}^{k}}}\left( \begin{matrix}
5 \\
k \\
\end{matrix} \right){{\left( 5-k \right)}^{7}} \\
& \Rightarrow \beta ={{\left( -1 \right)}^{0}}\left( \begin{matrix}
5 \\
0 \\
\end{matrix} \right){{\left( 5-0 \right)}^{7}}+{{\left( -1 \right)}^{1}}\left( \begin{matrix}
5 \\
1 \\
\end{matrix} \right){{\left( 5-1 \right)}^{7}}+{{\left( -1 \right)}^{2}}\left( \begin{matrix}
5 \\
2 \\
\end{matrix} \right){{\left( 5-2 \right)}^{7}}+{{\left( -1 \right)}^{3}}\left( \begin{matrix}
5 \\
3 \\
\end{matrix} \right){{\left( 5-3 \right)}^{7}} \\
& \ \ \ \ \ \ \ \ \ \ +{{\left( -1 \right)}^{4}}\left( \begin{matrix}
5 \\
4 \\
\end{matrix} \right){{\left( 5-4 \right)}^{7}}+{{\left( -1 \right)}^{5}}\left( \begin{matrix}
5 \\
5 \\
\end{matrix} \right){{\left( 5-5 \right)}^{7}} \\
& \Rightarrow \beta =1\times {{5}^{7}}-5\times {{4}^{7}}+10\times {{3}^{7}}-10\times
{{2}^{7}}+5\times {{1}^{7}} \\
& \Rightarrow \beta =5\left( {{5}^{6}}-{{4}^{7}} \right)+10\left( 2187-128 \right)+5 \\
& \Rightarrow \beta =5\left( 15625-16384 \right)+10\times 2059+5 \\
& \Rightarrow \beta =5\times \left( -759 \right)+20590+5 \\
& \Rightarrow \beta =20595-3795 \\
& \Rightarrow \beta =16800 \\
\end{align}$
Thus, the value of $\beta $ comes out to be 16800. This gives the value of $\dfrac{1}{51}\left( \beta -
\alpha \right)$ as
$\begin{align}
& \dfrac{1}{51}\left( \beta -\alpha \right)=\dfrac{1}{51}\left( 16800-2520 \right) \\
& \Rightarrow \dfrac{1}{51}\left( \beta -\alpha \right)=\dfrac{1}{51}\left( 14280 \right) \\
& \Rightarrow \dfrac{1}{51}\left( \beta -\alpha \right)=280 \\
\end{align}$
Thus the required value of $\dfrac{1}{51}\left( \beta -\alpha \right)$ is 280.
Note: The conditions for the calculation of one-one function and the calculation of the number of onto
functions are very important and to be kept in mind. These conditions, $n\ge m$ for one-one functions
and $m\ge n$ for onto functions is not only preliminary to the application of formulae but also necessary
for the existence of one-one and onto functions. If these conditions are violated, the number of one-one
functions and onto functions will both become 0 in their respective cases.
Y, and if $n\ge m$, then the number of one-one functions from X to Y is given by the formula
$\dfrac{n!}{\left( n-m \right)!}$. Further use the fact that the total number of onto functions from a set X with m elements and another set Y with n elements, such that $m\ge n$ is given by the sum $\sum\limits_{k=0}^{n}{-{{1}^{k}}}\left( \begin{matrix} n \\ k \\
\end{matrix} \right){{\left( n-k \right)}^{m}}$. . These values of $\alpha $ and $\beta $ can then be used to calculate the required value of $\dfrac{1}{51}\left( \alpha -\beta \right)$.
Complete step by step solution:
For mapping functions from set X having 5 elements to set Y having 7 elements, these functions can be
either one-one or many-one. The total number of one-one functions can be calculated using the formula
$\dfrac{n!}{\left( n-m \right)!}$, where n is the number of elements in Y and m is the number of elements
in X.
Thus, for the given question, $m=5$ and $n=7$. Using these values in the formula, we get
$\begin{align}
& \alpha =\dfrac{7!}{\left( 7-5 \right)!} \\
& \Rightarrow \alpha =\dfrac{7!}{2!} \\
& \Rightarrow \alpha =7\times 6\times 5\times 4\times 3 \\
& \Rightarrow \alpha =2520 \\
\end{align}$
Thus, the required value of $\alpha $ is 2520.
For the calculation of $\beta $, consider the mapping of functions from Y to X. The total number of onto
functions from a set Y having m elements to another set X having n elements, where $m\ge n$ is given by
the formula $\sum\limits_{k=0}^{n}{-{{1}^{k}}}\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{\left( n-k \right)}^{m}}$.
Thus, we calculate this sum with \[m=7\] and \[n=5\] as
$\begin{align}
& \beta =\sum\limits_{k=0}^{5}{{{\left( -1 \right)}^{k}}}\left( \begin{matrix}
5 \\
k \\
\end{matrix} \right){{\left( 5-k \right)}^{7}} \\
& \Rightarrow \beta ={{\left( -1 \right)}^{0}}\left( \begin{matrix}
5 \\
0 \\
\end{matrix} \right){{\left( 5-0 \right)}^{7}}+{{\left( -1 \right)}^{1}}\left( \begin{matrix}
5 \\
1 \\
\end{matrix} \right){{\left( 5-1 \right)}^{7}}+{{\left( -1 \right)}^{2}}\left( \begin{matrix}
5 \\
2 \\
\end{matrix} \right){{\left( 5-2 \right)}^{7}}+{{\left( -1 \right)}^{3}}\left( \begin{matrix}
5 \\
3 \\
\end{matrix} \right){{\left( 5-3 \right)}^{7}} \\
& \ \ \ \ \ \ \ \ \ \ +{{\left( -1 \right)}^{4}}\left( \begin{matrix}
5 \\
4 \\
\end{matrix} \right){{\left( 5-4 \right)}^{7}}+{{\left( -1 \right)}^{5}}\left( \begin{matrix}
5 \\
5 \\
\end{matrix} \right){{\left( 5-5 \right)}^{7}} \\
& \Rightarrow \beta =1\times {{5}^{7}}-5\times {{4}^{7}}+10\times {{3}^{7}}-10\times
{{2}^{7}}+5\times {{1}^{7}} \\
& \Rightarrow \beta =5\left( {{5}^{6}}-{{4}^{7}} \right)+10\left( 2187-128 \right)+5 \\
& \Rightarrow \beta =5\left( 15625-16384 \right)+10\times 2059+5 \\
& \Rightarrow \beta =5\times \left( -759 \right)+20590+5 \\
& \Rightarrow \beta =20595-3795 \\
& \Rightarrow \beta =16800 \\
\end{align}$
Thus, the value of $\beta $ comes out to be 16800. This gives the value of $\dfrac{1}{51}\left( \beta -
\alpha \right)$ as
$\begin{align}
& \dfrac{1}{51}\left( \beta -\alpha \right)=\dfrac{1}{51}\left( 16800-2520 \right) \\
& \Rightarrow \dfrac{1}{51}\left( \beta -\alpha \right)=\dfrac{1}{51}\left( 14280 \right) \\
& \Rightarrow \dfrac{1}{51}\left( \beta -\alpha \right)=280 \\
\end{align}$
Thus the required value of $\dfrac{1}{51}\left( \beta -\alpha \right)$ is 280.
Note: The conditions for the calculation of one-one function and the calculation of the number of onto
functions are very important and to be kept in mind. These conditions, $n\ge m$ for one-one functions
and $m\ge n$ for onto functions is not only preliminary to the application of formulae but also necessary
for the existence of one-one and onto functions. If these conditions are violated, the number of one-one
functions and onto functions will both become 0 in their respective cases.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

