Answer
Verified
492.3k+ views
Hint: Use the fact that if m be the number of elements in a set X and n be the number of elements in a set
Y, and if $n\ge m$, then the number of one-one functions from X to Y is given by the formula
$\dfrac{n!}{\left( n-m \right)!}$. Further use the fact that the total number of onto functions from a set X with m elements and another set Y with n elements, such that $m\ge n$ is given by the sum $\sum\limits_{k=0}^{n}{-{{1}^{k}}}\left( \begin{matrix} n \\ k \\
\end{matrix} \right){{\left( n-k \right)}^{m}}$. . These values of $\alpha $ and $\beta $ can then be used to calculate the required value of $\dfrac{1}{51}\left( \alpha -\beta \right)$.
Complete step by step solution:
For mapping functions from set X having 5 elements to set Y having 7 elements, these functions can be
either one-one or many-one. The total number of one-one functions can be calculated using the formula
$\dfrac{n!}{\left( n-m \right)!}$, where n is the number of elements in Y and m is the number of elements
in X.
Thus, for the given question, $m=5$ and $n=7$. Using these values in the formula, we get
$\begin{align}
& \alpha =\dfrac{7!}{\left( 7-5 \right)!} \\
& \Rightarrow \alpha =\dfrac{7!}{2!} \\
& \Rightarrow \alpha =7\times 6\times 5\times 4\times 3 \\
& \Rightarrow \alpha =2520 \\
\end{align}$
Thus, the required value of $\alpha $ is 2520.
For the calculation of $\beta $, consider the mapping of functions from Y to X. The total number of onto
functions from a set Y having m elements to another set X having n elements, where $m\ge n$ is given by
the formula $\sum\limits_{k=0}^{n}{-{{1}^{k}}}\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{\left( n-k \right)}^{m}}$.
Thus, we calculate this sum with \[m=7\] and \[n=5\] as
$\begin{align}
& \beta =\sum\limits_{k=0}^{5}{{{\left( -1 \right)}^{k}}}\left( \begin{matrix}
5 \\
k \\
\end{matrix} \right){{\left( 5-k \right)}^{7}} \\
& \Rightarrow \beta ={{\left( -1 \right)}^{0}}\left( \begin{matrix}
5 \\
0 \\
\end{matrix} \right){{\left( 5-0 \right)}^{7}}+{{\left( -1 \right)}^{1}}\left( \begin{matrix}
5 \\
1 \\
\end{matrix} \right){{\left( 5-1 \right)}^{7}}+{{\left( -1 \right)}^{2}}\left( \begin{matrix}
5 \\
2 \\
\end{matrix} \right){{\left( 5-2 \right)}^{7}}+{{\left( -1 \right)}^{3}}\left( \begin{matrix}
5 \\
3 \\
\end{matrix} \right){{\left( 5-3 \right)}^{7}} \\
& \ \ \ \ \ \ \ \ \ \ +{{\left( -1 \right)}^{4}}\left( \begin{matrix}
5 \\
4 \\
\end{matrix} \right){{\left( 5-4 \right)}^{7}}+{{\left( -1 \right)}^{5}}\left( \begin{matrix}
5 \\
5 \\
\end{matrix} \right){{\left( 5-5 \right)}^{7}} \\
& \Rightarrow \beta =1\times {{5}^{7}}-5\times {{4}^{7}}+10\times {{3}^{7}}-10\times
{{2}^{7}}+5\times {{1}^{7}} \\
& \Rightarrow \beta =5\left( {{5}^{6}}-{{4}^{7}} \right)+10\left( 2187-128 \right)+5 \\
& \Rightarrow \beta =5\left( 15625-16384 \right)+10\times 2059+5 \\
& \Rightarrow \beta =5\times \left( -759 \right)+20590+5 \\
& \Rightarrow \beta =20595-3795 \\
& \Rightarrow \beta =16800 \\
\end{align}$
Thus, the value of $\beta $ comes out to be 16800. This gives the value of $\dfrac{1}{51}\left( \beta -
\alpha \right)$ as
$\begin{align}
& \dfrac{1}{51}\left( \beta -\alpha \right)=\dfrac{1}{51}\left( 16800-2520 \right) \\
& \Rightarrow \dfrac{1}{51}\left( \beta -\alpha \right)=\dfrac{1}{51}\left( 14280 \right) \\
& \Rightarrow \dfrac{1}{51}\left( \beta -\alpha \right)=280 \\
\end{align}$
Thus the required value of $\dfrac{1}{51}\left( \beta -\alpha \right)$ is 280.
Note: The conditions for the calculation of one-one function and the calculation of the number of onto
functions are very important and to be kept in mind. These conditions, $n\ge m$ for one-one functions
and $m\ge n$ for onto functions is not only preliminary to the application of formulae but also necessary
for the existence of one-one and onto functions. If these conditions are violated, the number of one-one
functions and onto functions will both become 0 in their respective cases.
Y, and if $n\ge m$, then the number of one-one functions from X to Y is given by the formula
$\dfrac{n!}{\left( n-m \right)!}$. Further use the fact that the total number of onto functions from a set X with m elements and another set Y with n elements, such that $m\ge n$ is given by the sum $\sum\limits_{k=0}^{n}{-{{1}^{k}}}\left( \begin{matrix} n \\ k \\
\end{matrix} \right){{\left( n-k \right)}^{m}}$. . These values of $\alpha $ and $\beta $ can then be used to calculate the required value of $\dfrac{1}{51}\left( \alpha -\beta \right)$.
Complete step by step solution:
For mapping functions from set X having 5 elements to set Y having 7 elements, these functions can be
either one-one or many-one. The total number of one-one functions can be calculated using the formula
$\dfrac{n!}{\left( n-m \right)!}$, where n is the number of elements in Y and m is the number of elements
in X.
Thus, for the given question, $m=5$ and $n=7$. Using these values in the formula, we get
$\begin{align}
& \alpha =\dfrac{7!}{\left( 7-5 \right)!} \\
& \Rightarrow \alpha =\dfrac{7!}{2!} \\
& \Rightarrow \alpha =7\times 6\times 5\times 4\times 3 \\
& \Rightarrow \alpha =2520 \\
\end{align}$
Thus, the required value of $\alpha $ is 2520.
For the calculation of $\beta $, consider the mapping of functions from Y to X. The total number of onto
functions from a set Y having m elements to another set X having n elements, where $m\ge n$ is given by
the formula $\sum\limits_{k=0}^{n}{-{{1}^{k}}}\left( \begin{matrix}
n \\
k \\
\end{matrix} \right){{\left( n-k \right)}^{m}}$.
Thus, we calculate this sum with \[m=7\] and \[n=5\] as
$\begin{align}
& \beta =\sum\limits_{k=0}^{5}{{{\left( -1 \right)}^{k}}}\left( \begin{matrix}
5 \\
k \\
\end{matrix} \right){{\left( 5-k \right)}^{7}} \\
& \Rightarrow \beta ={{\left( -1 \right)}^{0}}\left( \begin{matrix}
5 \\
0 \\
\end{matrix} \right){{\left( 5-0 \right)}^{7}}+{{\left( -1 \right)}^{1}}\left( \begin{matrix}
5 \\
1 \\
\end{matrix} \right){{\left( 5-1 \right)}^{7}}+{{\left( -1 \right)}^{2}}\left( \begin{matrix}
5 \\
2 \\
\end{matrix} \right){{\left( 5-2 \right)}^{7}}+{{\left( -1 \right)}^{3}}\left( \begin{matrix}
5 \\
3 \\
\end{matrix} \right){{\left( 5-3 \right)}^{7}} \\
& \ \ \ \ \ \ \ \ \ \ +{{\left( -1 \right)}^{4}}\left( \begin{matrix}
5 \\
4 \\
\end{matrix} \right){{\left( 5-4 \right)}^{7}}+{{\left( -1 \right)}^{5}}\left( \begin{matrix}
5 \\
5 \\
\end{matrix} \right){{\left( 5-5 \right)}^{7}} \\
& \Rightarrow \beta =1\times {{5}^{7}}-5\times {{4}^{7}}+10\times {{3}^{7}}-10\times
{{2}^{7}}+5\times {{1}^{7}} \\
& \Rightarrow \beta =5\left( {{5}^{6}}-{{4}^{7}} \right)+10\left( 2187-128 \right)+5 \\
& \Rightarrow \beta =5\left( 15625-16384 \right)+10\times 2059+5 \\
& \Rightarrow \beta =5\times \left( -759 \right)+20590+5 \\
& \Rightarrow \beta =20595-3795 \\
& \Rightarrow \beta =16800 \\
\end{align}$
Thus, the value of $\beta $ comes out to be 16800. This gives the value of $\dfrac{1}{51}\left( \beta -
\alpha \right)$ as
$\begin{align}
& \dfrac{1}{51}\left( \beta -\alpha \right)=\dfrac{1}{51}\left( 16800-2520 \right) \\
& \Rightarrow \dfrac{1}{51}\left( \beta -\alpha \right)=\dfrac{1}{51}\left( 14280 \right) \\
& \Rightarrow \dfrac{1}{51}\left( \beta -\alpha \right)=280 \\
\end{align}$
Thus the required value of $\dfrac{1}{51}\left( \beta -\alpha \right)$ is 280.
Note: The conditions for the calculation of one-one function and the calculation of the number of onto
functions are very important and to be kept in mind. These conditions, $n\ge m$ for one-one functions
and $m\ge n$ for onto functions is not only preliminary to the application of formulae but also necessary
for the existence of one-one and onto functions. If these conditions are violated, the number of one-one
functions and onto functions will both become 0 in their respective cases.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE