
Let we have two points as \[P(a\sec \theta ,b\tan \theta )\] and \[Q(a\sec \phi ,b\tan \phi )\], where \[\theta + \phi = \dfrac{\pi }{2}\], be two points on hyperbola \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\]. If (h,k) is the point of intersection of the normal at P &Q, then k is equal to_______
A) \[\left[ {\dfrac{{{a^2} + {b^2}}}{a}} \right]\]
B) \[ - \left[ {\dfrac{{{a^2} + {b^2}}}{a}} \right]\]
C) \[\dfrac{{{a^2} + {b^2}}}{{ - b}}\]
D) \[ - \left[ {\dfrac{{{a^2} + {b^2}}}{b}} \right]\]
Answer
505.2k+ views
Hint: This question is based on the chapter conic sections, Hyperbola. The hyperbola with foci on the x- axis can be represented as \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\]. In a hyperbola \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\], the length of latus rectum is given by \[\dfrac{{2{b^{^2}}}}{a}\].
Complete step-by-step solution:
According to the question, firstly, we will obtain the slope of normal as \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\] at \[(a\sec \theta ,b\tan \theta )\].
Now, we will differentiate it with respect to \[x\], and we get:
\[ \Rightarrow \dfrac{{2x}}{{{a^2}}} - \dfrac{{2y}}{{{b^2}}} \times \dfrac{{dy}}{{dx}} = 0\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{b^2}}}{{{a^2}}} \times \dfrac{x}{y}\]
Slope for normal at point \[(a\sec \theta ,b\tan \theta )\] will be:
\[ \Rightarrow - \dfrac{{{a^2}b\tan \theta }}{{{b^2}a\sec \theta }} = - \dfrac{a}{b}\sin \theta \]
Therefore, equation of normal at \[(a\sec \theta ,b\tan \theta )\] is:
\[ \Rightarrow y - b\tan \theta = - \dfrac{a}{b}\sin \theta \left( {x - a\sec \theta } \right)\]
\[ \Rightarrow \left( {a\sin \theta } \right)x + by = \left( {{a^2} + {b^2}} \right)\tan \theta \]
\[ \Rightarrow ax + by\cos ec\theta = \left( {{a^2} + {b^2}} \right)\sec \theta \,\,\,\,\,\,\,\, ----- equation\,1\]
Similarly, the equation of normal to \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\] at: \[\left( {a\sec \phi ,b\tan \phi } \right)\] is
\[ax+by\cos ec\varphi = \left( {{a^2} + {b^2}} \right){\sec \varphi}\,\,\,\,\,\,\,\,\, ----- equation\,2\]
On subtracting the equation 2 from the equation 1, we get:
\[ \Rightarrow b\left( {\cos ec\theta - \cos ec\phi } \right)y = \left( {{a^2} + {b^2}} \right)\left( {\sec \theta - \sec \varphi } \right)\]
By Calculating ‘y’, we get:
\[ \Rightarrow y = \dfrac{{{a^2} + {b^2}}}{b}.\dfrac{{\sec \theta - \sec \varphi }}{{\cos ec\theta - \cos ec\phi }}\]
But we know that:
\[ \Rightarrow y = \dfrac{{{a^2} + {b^2}}}{b}.\dfrac{{\sec \theta - \sec \left( {\dfrac{\pi }{2} - \theta } \right)}}{{\cos ec\theta - \cos ec\left( {\dfrac{\pi }{2} - \theta } \right)}}\]
But as per the question:
\[\left[ {\because \phi + \theta = \dfrac{\pi }{2}} \right]\]
So, we get:
\[\dfrac{{\sec \theta - \cos ec\theta }}{{\sec \theta - \sec \theta }} = - 1\]
Thus, we get that\[y = - \left( {\dfrac{{{a^2} + {b^2}}}{b}} \right)\]
That is \[k = - \left( {\dfrac{{{a^2} + {b^2}}}{b}} \right)\]
Therefore, we get the final result, and it is clear that Option D is the right option.
Note: Hyperbola is the difference of distances of a set of points in a plane from two fixed points is constant. Any points on a hyperbola should always be compared with the standard equation of a hyperbola.
Complete step-by-step solution:
According to the question, firstly, we will obtain the slope of normal as \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\] at \[(a\sec \theta ,b\tan \theta )\].
Now, we will differentiate it with respect to \[x\], and we get:
\[ \Rightarrow \dfrac{{2x}}{{{a^2}}} - \dfrac{{2y}}{{{b^2}}} \times \dfrac{{dy}}{{dx}} = 0\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{b^2}}}{{{a^2}}} \times \dfrac{x}{y}\]
Slope for normal at point \[(a\sec \theta ,b\tan \theta )\] will be:
\[ \Rightarrow - \dfrac{{{a^2}b\tan \theta }}{{{b^2}a\sec \theta }} = - \dfrac{a}{b}\sin \theta \]
Therefore, equation of normal at \[(a\sec \theta ,b\tan \theta )\] is:
\[ \Rightarrow y - b\tan \theta = - \dfrac{a}{b}\sin \theta \left( {x - a\sec \theta } \right)\]
\[ \Rightarrow \left( {a\sin \theta } \right)x + by = \left( {{a^2} + {b^2}} \right)\tan \theta \]
\[ \Rightarrow ax + by\cos ec\theta = \left( {{a^2} + {b^2}} \right)\sec \theta \,\,\,\,\,\,\,\, ----- equation\,1\]
Similarly, the equation of normal to \[\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1\] at: \[\left( {a\sec \phi ,b\tan \phi } \right)\] is
\[ax+by\cos ec\varphi = \left( {{a^2} + {b^2}} \right){\sec \varphi}\,\,\,\,\,\,\,\,\, ----- equation\,2\]
On subtracting the equation 2 from the equation 1, we get:
\[ \Rightarrow b\left( {\cos ec\theta - \cos ec\phi } \right)y = \left( {{a^2} + {b^2}} \right)\left( {\sec \theta - \sec \varphi } \right)\]
By Calculating ‘y’, we get:
\[ \Rightarrow y = \dfrac{{{a^2} + {b^2}}}{b}.\dfrac{{\sec \theta - \sec \varphi }}{{\cos ec\theta - \cos ec\phi }}\]
But we know that:
\[ \Rightarrow y = \dfrac{{{a^2} + {b^2}}}{b}.\dfrac{{\sec \theta - \sec \left( {\dfrac{\pi }{2} - \theta } \right)}}{{\cos ec\theta - \cos ec\left( {\dfrac{\pi }{2} - \theta } \right)}}\]
But as per the question:
\[\left[ {\because \phi + \theta = \dfrac{\pi }{2}} \right]\]
So, we get:
\[\dfrac{{\sec \theta - \cos ec\theta }}{{\sec \theta - \sec \theta }} = - 1\]
Thus, we get that\[y = - \left( {\dfrac{{{a^2} + {b^2}}}{b}} \right)\]
That is \[k = - \left( {\dfrac{{{a^2} + {b^2}}}{b}} \right)\]
Therefore, we get the final result, and it is clear that Option D is the right option.
Note: Hyperbola is the difference of distances of a set of points in a plane from two fixed points is constant. Any points on a hyperbola should always be compared with the standard equation of a hyperbola.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

