Answer
Verified
465k+ views
Hint: Relate the relation between x, sin x and tan x when x is limiting to zero. Relate it with the domain of \[{{\sec }^{-1}}x\] for existing limits.
Here, we have given the limits as
$\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\sin x} \right)=l....\left( i \right)$
And, \[\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\tan x} \right)=m.....\left( ii \right)\]
First, we need to know about the domain of \[{{\sec }^{-1}}x\] i.e. \[\left( -\infty ,-1 \right]\cup \left[ 1,\infty \right)\].
Now, try to relate values of \[\dfrac{x}{\sin x}\] and \[\dfrac{x}{\tan x}\] for limit \[x\to 0\], if value inside of \[{{\sec }^{-1}}\left( {} \right)\] will lie in \[\left( -1,1 \right)\] then limit will not exist and if value inside the bracket lies in \[\left( -\infty ,-1 \right]\cup \left[ 1,\infty \right)\]. Hence limit will exist.
Let us first relate \[\dfrac{x}{\sin x}\].
One can relate x with sin x and tan x by calculating tangent equations of tan x and sin x at (0, 0) and relate it with y = x.
We know that one can find tangent at any point lying on the curve by calculating slope at that point. Let the point be \[\left( {{x}_{1}},{{y}_{1}} \right)\] and curve is y = f (x) then tangent at \[\left( {{x}_{1}},{{y}_{1}} \right)\] can be given by \[y-{{y}_{1}}={{\left. \dfrac{dy}{dx} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}\left( x-{{x}_{1}} \right)\]
Tangent equation for sin x at (0, 0) is
\[y-0={{\left. \dfrac{d}{dx}\left( \sin x \right) \right|}_{\left( 0,0 \right)}}\left( x-0 \right)\]
\[y={{\left. \cos x \right|}_{\left( 0,0 \right)}}\left( x \right)\text{ }\left[ \because \dfrac{d}{dx}\sin x=\cos x \right]\]
\[y=x\]
Hence, \[y=x\] is tangent for \[y=\sin x\].
Draw graph of x and sin x in one coordinate plane as follows:
Now for the second case i.e. \[\dfrac{x}{\tan x}\], we get the tangent equation of tan x at (0, 0) is
\[y-0={{\left. \dfrac{dy}{dx} \right|}_{\left( 0,0 \right)}}\left( x-0 \right)\]
\[y={{\left. {{\sec }^{2}}x \right|}_{\left( 0,0 \right)}}\left( x \right)\text{ }\left[ \dfrac{d}{dx}\tan x={{\sec }^{2}}x \right]\]
\[y=x\]
Hence, y = x is tangent for \[y=\tan x\] as well.
Let us draw the graph of x and tan x as follows:
Now from the graphs, we can relate for \[\dfrac{x}{\sin x}\] that is:
Case 1: \[x\to {{0}^{+}}\]
We observe x > sin x
Hence, \[\dfrac{x}{\sin x}>1\]
Case 2: \[x\to {{0}^{-}}\]
Here, sin x has a higher positive magnitude than x. Hence, if we put a negative sign to both x and sin x, then
\[x>\sin x\]
\[\dfrac{x}{\sin x}>1\]
Hence, from case 1 and case 2, we get
If \[\lim x\to 0,\] then \[\dfrac{x}{\sin x}>1....\left( iii \right)\]
Similarly, let us relate x and tan x for \[x\to 0\]
Case 1: \[x\to {{0}^{+}}\]
x < tan x
\[\dfrac{x}{\tan x}<1\]
Case 2: \[x\to {{0}^{-}}\]
x < tan x
\[\dfrac{x}{\tan x}<1\]
Hence, for \[x\to 0\], we have \[\dfrac{x}{\tan x}<1....\left( iv \right)\]
Now, for limit ‘l’ from equation (i), we get
\[l=\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\sin x} \right)\]
As we have \[\dfrac{x}{\sin x}>1\] from equation (iii) and domain of \[{{\sec }^{-1}}x\] is \[\left( -\infty ,-1 \right]\cup \left[ 1,\infty \right)\] as explained in the starting. Hence, we can put \[\lim x\to 0\] to the given relation.
So, \[l=\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\sin x} \right)\] will exist.
For limit ‘m’ from equation (ii), we get
\[m=\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\tan x} \right)\]
We have already calculated that \[\dfrac{x}{\tan x}<1\] from equation (iv) and domain of \[{{\sec }^{-1}}x\] is \[\left( -\infty ,-1 \right]\cup \left[ 1,\infty \right)\]. Hence the given limit will not exist.
Hence, option (a) is the correct answer to the given problem.
Note: One can directly put \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\sin x}=1\] and \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\tan x}=1\] as we generally use but that will be wrong for the given expression. As the exact value of \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\sin x}\] and \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\tan x}\] is not exactly 1, it’s the limiting value of the given expressions. Hence, be careful with these kinds of problems. Relating x with tan x and sin x by calculating tangent at (0, 0) for sin x and tan x is the key point of the question.
Here, we have given the limits as
$\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\sin x} \right)=l....\left( i \right)$
And, \[\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\tan x} \right)=m.....\left( ii \right)\]
First, we need to know about the domain of \[{{\sec }^{-1}}x\] i.e. \[\left( -\infty ,-1 \right]\cup \left[ 1,\infty \right)\].
Now, try to relate values of \[\dfrac{x}{\sin x}\] and \[\dfrac{x}{\tan x}\] for limit \[x\to 0\], if value inside of \[{{\sec }^{-1}}\left( {} \right)\] will lie in \[\left( -1,1 \right)\] then limit will not exist and if value inside the bracket lies in \[\left( -\infty ,-1 \right]\cup \left[ 1,\infty \right)\]. Hence limit will exist.
Let us first relate \[\dfrac{x}{\sin x}\].
One can relate x with sin x and tan x by calculating tangent equations of tan x and sin x at (0, 0) and relate it with y = x.
We know that one can find tangent at any point lying on the curve by calculating slope at that point. Let the point be \[\left( {{x}_{1}},{{y}_{1}} \right)\] and curve is y = f (x) then tangent at \[\left( {{x}_{1}},{{y}_{1}} \right)\] can be given by \[y-{{y}_{1}}={{\left. \dfrac{dy}{dx} \right|}_{\left( {{x}_{1}},{{y}_{1}} \right)}}\left( x-{{x}_{1}} \right)\]
Tangent equation for sin x at (0, 0) is
\[y-0={{\left. \dfrac{d}{dx}\left( \sin x \right) \right|}_{\left( 0,0 \right)}}\left( x-0 \right)\]
\[y={{\left. \cos x \right|}_{\left( 0,0 \right)}}\left( x \right)\text{ }\left[ \because \dfrac{d}{dx}\sin x=\cos x \right]\]
\[y=x\]
Hence, \[y=x\] is tangent for \[y=\sin x\].
Draw graph of x and sin x in one coordinate plane as follows:
Now for the second case i.e. \[\dfrac{x}{\tan x}\], we get the tangent equation of tan x at (0, 0) is
\[y-0={{\left. \dfrac{dy}{dx} \right|}_{\left( 0,0 \right)}}\left( x-0 \right)\]
\[y={{\left. {{\sec }^{2}}x \right|}_{\left( 0,0 \right)}}\left( x \right)\text{ }\left[ \dfrac{d}{dx}\tan x={{\sec }^{2}}x \right]\]
\[y=x\]
Hence, y = x is tangent for \[y=\tan x\] as well.
Let us draw the graph of x and tan x as follows:
Case 1: \[x\to {{0}^{+}}\]
We observe x > sin x
Hence, \[\dfrac{x}{\sin x}>1\]
Case 2: \[x\to {{0}^{-}}\]
Here, sin x has a higher positive magnitude than x. Hence, if we put a negative sign to both x and sin x, then
\[x>\sin x\]
\[\dfrac{x}{\sin x}>1\]
Hence, from case 1 and case 2, we get
If \[\lim x\to 0,\] then \[\dfrac{x}{\sin x}>1....\left( iii \right)\]
Similarly, let us relate x and tan x for \[x\to 0\]
Case 1: \[x\to {{0}^{+}}\]
x < tan x
\[\dfrac{x}{\tan x}<1\]
Case 2: \[x\to {{0}^{-}}\]
x < tan x
\[\dfrac{x}{\tan x}<1\]
Hence, for \[x\to 0\], we have \[\dfrac{x}{\tan x}<1....\left( iv \right)\]
Now, for limit ‘l’ from equation (i), we get
\[l=\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\sin x} \right)\]
As we have \[\dfrac{x}{\sin x}>1\] from equation (iii) and domain of \[{{\sec }^{-1}}x\] is \[\left( -\infty ,-1 \right]\cup \left[ 1,\infty \right)\] as explained in the starting. Hence, we can put \[\lim x\to 0\] to the given relation.
So, \[l=\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\sin x} \right)\] will exist.
For limit ‘m’ from equation (ii), we get
\[m=\underset{x\to 0}{\mathop{\lim }}\,{{\sec }^{-1}}\left( \dfrac{x}{\tan x} \right)\]
We have already calculated that \[\dfrac{x}{\tan x}<1\] from equation (iv) and domain of \[{{\sec }^{-1}}x\] is \[\left( -\infty ,-1 \right]\cup \left[ 1,\infty \right)\]. Hence the given limit will not exist.
Hence, option (a) is the correct answer to the given problem.
Note: One can directly put \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\sin x}=1\] and \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\tan x}=1\] as we generally use but that will be wrong for the given expression. As the exact value of \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\sin x}\] and \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{\tan x}\] is not exactly 1, it’s the limiting value of the given expressions. Hence, be careful with these kinds of problems. Relating x with tan x and sin x by calculating tangent at (0, 0) for sin x and tan x is the key point of the question.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
10 examples of evaporation in daily life with explanations
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference Between Plant Cell and Animal Cell
What are the monomers and polymers of carbohydrate class 12 chemistry CBSE