Let $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{[x]}^{2}}}{{{x}^{2}}}=l\And \underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\left[ x \right]}^{2}}}{{{x}^{2}}}=m$, where [ ] denotes greatest integer, then:
A. l exists but m does not
B. m exists but l does not
C. l & m both exist
D. neither l nor m exists
Answer
360.9k+ views
Hint: Find LHL and RHL of both the limits $l=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{[x]}^{2}}}{{{x}^{2}}}$and $m=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\left[ x \right]}^{2}}}{{{x}^{2}}}$.
Complete step-by-step answer:
Use the definition of [x] property to solve the problem.
Don’t evaluate exact limits just relate LHL and RHL.
We have given that,
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{[x]}^{2}}}{{{x}^{2}}}=l\ldots \ldots (1)$
and
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\left[ x \right]}^{2}}}{{{x}^{2}}}=m\ldots \ldots (2)$
where we need to find about l and m i.e. Will they exist or not?$\dfrac{0}{0}$
Now, as we know for the existence of any limit, LHL (Left hand limit) and RHL (Right hand limit) should be equal for any given limit expression.
Hence we need to find LHL and RHL for both the equations.
We know that [x] is the greatest integer for any given ‘x’ and take the left most integer value w.r.t ‘x’ on the number line.
Now, let us calculate LHL and RHL for equation (1);
LHL=$\underset{x\to 0-}{\mathop{\lim }}\,\dfrac{{{[x]}^{2}}}{{{x}^{2}}}$
Hence x is lying between $(-1,0)$ as $x\to {{0}^{-}}$(left to 0) and hence [x] = -1.
Hence, LHL after putting [x] = -1, we get
$\underset{x\to 0-}{\mathop{\lim }}\,\dfrac{{{\left( -1 \right)}^{2}}}{{{x}^{2}}}=\underset{x\to 0-}{\mathop{\lim }}\,\dfrac{1}{{{x}^{2}}}$
As$x\to {{0}^{-}}$, i.e. x maybe (-0.000123), so we will get some definite value of $\dfrac{1}{{{x}^{2}}}$if we apply$x\to {{0}^{-}}$.
Hence, LHL gives a definite value.
Now, RHL can be calculated as
RHL=$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{[x]}^{2}}}{{{x}^{2}}}$
As x is lying between (0, 1) for$x\to {{0}^{+}}$,
hence [x] will be 0.
Hence, RHL=$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{0}{{{x}^{2}}}$
Here, we can put $x\to {{0}^{+}}$(example: x=0.000333), but we will get RHL=0 as the numerator is already 0.
Hence, LHL and RHL for $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{[x]}^{2}}}{{{x}^{2}}}=l$will not exist as LHL given a definite value and RHL is giving 0. Both are not equal.
Now, let us calculate limit for $m=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\left[ x \right]}^{2}}}{{{x}^{2}}}$i.e. equation (2).
LHL can be given as
LHL=$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{{{\left[ x \right]}^{2}}}{{{x}^{2}}}$
As x is lying in (-1, 0), so ${{x}^{2}}$lies in (0, 1) as squaring negative values between -1 and 0, we will get positive values between (0,1). Hence ${{x}^{2}}$will be positive and tending to ${{0}^{+}}$as x is tending to${{0}^{-}}$. Hence [x] =0.
We get, LHL=$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{0}{{{x}^{2}}}=0$
Hence, LHL will be zero for any definite value of x which is tending to zero.
We get RHL=$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{0}{{{x}^{2}}}=0$
RHL can be calculated as
RHL=$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{[x]}^{2}}}{{{x}^{2}}}$
As ‘x’ is lying in (0, 1); hence squaring numbers between (0,1) will be more smaller than 1 and will lie in (0,1) as well. Hence $[{{x}^{2}}]$=0.
We get RHL=$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{0}{{{x}^{2}}}=0$
Hence, RHL will be zero for any definite value of x which is tending to ${{0}^{+}}$.
Therefore, $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\left[ x \right]}^{2}}}{{{x}^{2}}}=m$will exist as LHL and RHL are equal to each other.
Hence, B. is the correct answer i.e. m exists but l does not.
Note: One can get confuse by putting $x\to 0$ to $\dfrac{[{{x}^{2}}]}{{{x}^{2}}}$, as we can get $\dfrac{0}{0}$ if we put limit directly to the function, which is wrong. Hence, we cannot put x=0 to the given function directly in these kinds of problems.
One can apply LHL and RHL by replacing x by (0-h) and (0+h) to the expressions where h will tend to zero. Now, related LHL and RHL for existing limits.
So, we need to use LHL and RHL for determining the limits of these kinds of questions.
Complete step-by-step answer:
Use the definition of [x] property to solve the problem.
Don’t evaluate exact limits just relate LHL and RHL.
We have given that,
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{[x]}^{2}}}{{{x}^{2}}}=l\ldots \ldots (1)$
and
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\left[ x \right]}^{2}}}{{{x}^{2}}}=m\ldots \ldots (2)$
where we need to find about l and m i.e. Will they exist or not?$\dfrac{0}{0}$
Now, as we know for the existence of any limit, LHL (Left hand limit) and RHL (Right hand limit) should be equal for any given limit expression.
Hence we need to find LHL and RHL for both the equations.
We know that [x] is the greatest integer for any given ‘x’ and take the left most integer value w.r.t ‘x’ on the number line.
Now, let us calculate LHL and RHL for equation (1);
LHL=$\underset{x\to 0-}{\mathop{\lim }}\,\dfrac{{{[x]}^{2}}}{{{x}^{2}}}$
Hence x is lying between $(-1,0)$ as $x\to {{0}^{-}}$(left to 0) and hence [x] = -1.
Hence, LHL after putting [x] = -1, we get
$\underset{x\to 0-}{\mathop{\lim }}\,\dfrac{{{\left( -1 \right)}^{2}}}{{{x}^{2}}}=\underset{x\to 0-}{\mathop{\lim }}\,\dfrac{1}{{{x}^{2}}}$
As$x\to {{0}^{-}}$, i.e. x maybe (-0.000123), so we will get some definite value of $\dfrac{1}{{{x}^{2}}}$if we apply$x\to {{0}^{-}}$.
Hence, LHL gives a definite value.
Now, RHL can be calculated as
RHL=$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{[x]}^{2}}}{{{x}^{2}}}$
As x is lying between (0, 1) for$x\to {{0}^{+}}$,
hence [x] will be 0.
Hence, RHL=$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{0}{{{x}^{2}}}$
Here, we can put $x\to {{0}^{+}}$(example: x=0.000333), but we will get RHL=0 as the numerator is already 0.
Hence, LHL and RHL for $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{[x]}^{2}}}{{{x}^{2}}}=l$will not exist as LHL given a definite value and RHL is giving 0. Both are not equal.
Now, let us calculate limit for $m=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\left[ x \right]}^{2}}}{{{x}^{2}}}$i.e. equation (2).
LHL can be given as
LHL=$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{{{\left[ x \right]}^{2}}}{{{x}^{2}}}$
As x is lying in (-1, 0), so ${{x}^{2}}$lies in (0, 1) as squaring negative values between -1 and 0, we will get positive values between (0,1). Hence ${{x}^{2}}$will be positive and tending to ${{0}^{+}}$as x is tending to${{0}^{-}}$. Hence [x] =0.
We get, LHL=$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{0}{{{x}^{2}}}=0$
Hence, LHL will be zero for any definite value of x which is tending to zero.
We get RHL=$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{0}{{{x}^{2}}}=0$
RHL can be calculated as
RHL=$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{[x]}^{2}}}{{{x}^{2}}}$
As ‘x’ is lying in (0, 1); hence squaring numbers between (0,1) will be more smaller than 1 and will lie in (0,1) as well. Hence $[{{x}^{2}}]$=0.
We get RHL=$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{0}{{{x}^{2}}}=0$
Hence, RHL will be zero for any definite value of x which is tending to ${{0}^{+}}$.
Therefore, $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\left[ x \right]}^{2}}}{{{x}^{2}}}=m$will exist as LHL and RHL are equal to each other.
Hence, B. is the correct answer i.e. m exists but l does not.
Note: One can get confuse by putting $x\to 0$ to $\dfrac{[{{x}^{2}}]}{{{x}^{2}}}$, as we can get $\dfrac{0}{0}$ if we put limit directly to the function, which is wrong. Hence, we cannot put x=0 to the given function directly in these kinds of problems.
One can apply LHL and RHL by replacing x by (0-h) and (0+h) to the expressions where h will tend to zero. Now, related LHL and RHL for existing limits.
So, we need to use LHL and RHL for determining the limits of these kinds of questions.
Last updated date: 23rd Sep 2023
•
Total views: 360.9k
•
Views today: 5.60k
Recently Updated Pages
What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

What is the past tense of read class 10 english CBSE
