
Let U= {4, 8, 12, 16, 20, 24, 28}, A= { 8, 16, 24} and B= { 4, 16, 20, 28}.
Find ${\text{(A}} \cup {\text{B)'}}$ and ${\text{(A}} \cap {\text{B)'}}$.
Answer
619.5k+ views
Hint: In order to solve this problem we need to know that $ \cup \,{\text{and }} \cap $ are the signs of union and intersection. Union means collection of all the elements of all the sets provided and intersection between two sets means the element common in those sets will be considered and if there is a set P then P’ means all the elements except that of P. Knowing this information you will get the right answer to this question.
Complete step-by-step answer:
We have the set U= {4, 8, 12, 16, 20, 24, 28}, A= { 8, 16, 24} and B= { 4, 16, 20, 28}.
We have to find ${\text{(A}} \cup {\text{B)'}}$ and ${\text{(A}} \cap {\text{B)'}}$
We know that ${\text{(A}} \cup {\text{B)}}$ means all the elements in A and B
Therefore, ${\text{(A}} \cup {\text{B)}}$={4, 8, 16, 20, 24, 28}
And ${\text{(A}} \cup {\text{B)'}}$ means all the elements of U except that present in ${\text{(A}} \cup {\text{B)}}$.
Therefore, ${\text{(A}} \cup {\text{B)'}}$= {12}
We know that ${\text{(A}} \cap {\text{B)}}$ means all the elements common in A and B.
Therefore, ${\text{(A}} \cap {\text{B)}}$={16}
And ${\text{(A}} \cap {\text{B)'}}$ means all the elements of U except that present in ${\text{(A}} \cap {\text{B)}}$.
Therefore, ${\text{(A}} \cap {\text{B)'}}$= {4, 8, 12, 20, 24, 28}.
Hence, ${\text{(A}} \cup {\text{B)'}}$= {12} and ${\text{(A}} \cap {\text{B)'}}$= {4, 8, 12, 20, 24, 28}.
Note: Whenever you face such types of problems you need to know that $ \cup \,{\text{and }} \cap $ are the signs of union and intersection. Union means collection of all the elements of all the sets provided and intersection between two sets means the element common in those sets will be considered and if there is a set P then P’ means all the elements except that of P. Proceeding with the help of this will solve your problem.
Complete step-by-step answer:
We have the set U= {4, 8, 12, 16, 20, 24, 28}, A= { 8, 16, 24} and B= { 4, 16, 20, 28}.
We have to find ${\text{(A}} \cup {\text{B)'}}$ and ${\text{(A}} \cap {\text{B)'}}$
We know that ${\text{(A}} \cup {\text{B)}}$ means all the elements in A and B
Therefore, ${\text{(A}} \cup {\text{B)}}$={4, 8, 16, 20, 24, 28}
And ${\text{(A}} \cup {\text{B)'}}$ means all the elements of U except that present in ${\text{(A}} \cup {\text{B)}}$.
Therefore, ${\text{(A}} \cup {\text{B)'}}$= {12}
We know that ${\text{(A}} \cap {\text{B)}}$ means all the elements common in A and B.
Therefore, ${\text{(A}} \cap {\text{B)}}$={16}
And ${\text{(A}} \cap {\text{B)'}}$ means all the elements of U except that present in ${\text{(A}} \cap {\text{B)}}$.
Therefore, ${\text{(A}} \cap {\text{B)'}}$= {4, 8, 12, 20, 24, 28}.
Hence, ${\text{(A}} \cup {\text{B)'}}$= {12} and ${\text{(A}} \cap {\text{B)'}}$= {4, 8, 12, 20, 24, 28}.
Note: Whenever you face such types of problems you need to know that $ \cup \,{\text{and }} \cap $ are the signs of union and intersection. Union means collection of all the elements of all the sets provided and intersection between two sets means the element common in those sets will be considered and if there is a set P then P’ means all the elements except that of P. Proceeding with the help of this will solve your problem.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

