
Let the volume of a parallelepiped whose coterminous edges are given by \[\overrightarrow{u}=\widehat{i}+\widehat{j}+\lambda \widehat{k},\vec{v}=\widehat{i}+\widehat{j}+3\widehat{k}\text{ and }\vec{w}=2\widehat{i}+\widehat{j}+\widehat{k}\] be 1 cu. units. If $\theta $ be the angle between the edge $\vec{u}$ and $\vec{w}$ , then $\cos \theta $ can be :
A. $\dfrac{5}{7}$
B. $\dfrac{5}{3\sqrt{3}}$
C. $\dfrac{7}{6\sqrt{6}}$
D. $\dfrac{7}{6\sqrt{3}}$
Answer
514.5k+ views
Hint: We are given that the volume of parallelepiped with given edges is 1 cu.unit. We can write it as Volume $=\left| \left( u\times \vec{v} \right).w \right|=\left[ \vec{u}\vec{v}\vec{w} \right]=\left| \begin{matrix}
1 & 1 & \lambda \\
1 & 1 & 3 \\
2 & 1 & 1 \\
\end{matrix} \right|=\pm 1$ . We will find the value of $\lambda $ for 1 and -1 by expanding the determinant. Then, we will substitute these values in $\vec{u}$ for each values of $\lambda $ and find angle between vectors $\text{\vec{u} and \vec{w}}$ for each case using \[\cos \theta =\dfrac{\vec{u}\cdot \vec{w}}{\left| {\vec{u}} \right|\left| {\vec{w}} \right|}\].
Complete step-by-step solution:
We are given that the edges of parallelepiped are \[\overrightarrow{u}=\widehat{i}+\widehat{j}+\lambda \widehat{k},\vec{v}=\widehat{i}+\widehat{j}+3\widehat{k}\text{ and }\vec{w}=2\widehat{i}+\widehat{j}+\widehat{k}\] and the volume is 1 cu.unit. The figure below shows the parallelepiped.
We know that for a parallelepiped of edges $\vec{a}={{a}_{1}}\widehat{i}+{{a}_{2}}\widehat{j}+{{a}_{3}}\widehat{k},\text{ }\vec{b}={{b}_{1}}\widehat{i}+{{b}_{2}}\widehat{j}+{{b}_{3}}\widehat{k}\text{ }$ and $\vec{c}={{c}_{1}}\widehat{i}+{{c}_{2}}\widehat{j}+{{c}_{3}}\widehat{k}$ , volume is given by
$\left| \left( \vec{a}\times \vec{b} \right).\vec{c} \right|=\left[ \vec{a}\vec{b}\vec{c} \right]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$
Now, let’s write the volume of parallelepiped for given edges.
Volume $=\left| \begin{matrix}
1 & 1 & \lambda \\
1 & 1 & 3 \\
2 & 1 & 1 \\
\end{matrix} \right|$
We are given that volume is 1 cu. unit. We will take $\pm 1$Hence,
$\left| \begin{matrix}
1 & 1 & \lambda \\
1 & 1 & 3 \\
2 & 1 & 1 \\
\end{matrix} \right|=\pm 1$
Let us solve the determinant.
$1\left( 1-3 \right)-1\left( 1-6 \right)+\lambda \left( 1-2 \right)=\pm 1...\left( i \right)$
Let’s solve this to find the value of $\lambda $ for $+1$ .
\[\begin{align}
& 1\times -2-1\times -5-\lambda =1 \\
& \Rightarrow -2+5-\lambda =1 \\
& \Rightarrow 3-\lambda =1 \\
\end{align}\]
Let’s collect constants on RHS. We will get
\[\begin{align}
& \Rightarrow -\lambda =1-3 \\
& \Rightarrow -\lambda =-2 \\
& \Rightarrow \lambda =2 \\
\end{align}\]
Now, let us solve (i) to find the value of $\lambda $ for $-1$ .
\[\begin{align}
& 1\times -2-1\times -5-\lambda =-1 \\
& \Rightarrow -2+5-\lambda =-1 \\
& \Rightarrow 3-\lambda =-1 \\
\end{align}\]
Let’s collect constants on RHS. We will get
\[\begin{align}
& \Rightarrow -\lambda =-1-3 \\
& \Rightarrow -\lambda =-4 \\
& \Rightarrow \lambda =4 \\
\end{align}\]
Now, we have to find the angle between $\vec{u}$ and $\vec{w}$ for $\lambda =2$ .
We know that angle between any two vectors $\vec{a}\text{ and }\vec{b}$ is given by
\[\cos \theta =\dfrac{\vec{a}\cdot \vec{b}}{\left| {\vec{a}} \right|\left| {\vec{b}} \right|}\]
Hence, angle between vectors $\text{\vec{u} and \vec{w}}$ is given by
\[\cos \theta =\dfrac{\vec{u}\cdot \vec{w}}{\left| {\vec{u}} \right|\left| {\vec{w}} \right|}...\left( a \right)\]
Let us find \[\vec{u}\cdot \vec{w}\] .
We know that for two vectors $\vec{a}={{a}_{1}}\widehat{i}+{{a}_{2}}\widehat{j}+{{a}_{3}}\widehat{k},\text{ }\vec{b}={{b}_{1}}\widehat{i}+{{b}_{2}}\widehat{j}+{{b}_{3}}\widehat{k}\text{ }$ , dot product is found as follows.
$\begin{align}
& \vec{a}\cdot \vec{b}=\left( {{a}_{1}}\widehat{i}+{{a}_{2}}\widehat{j}+{{a}_{3}}\widehat{k} \right)\cdot \left( {{b}_{1}}\widehat{i}+{{b}_{2}}\widehat{j}+{{b}_{3}}\widehat{k}\text{ } \right) \\
& \Rightarrow \vec{a}\cdot \vec{b}=\left( {{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}} \right) \\
\end{align}$
Now, we can find \[\vec{u}\cdot \vec{w}\] where, \[\overrightarrow{u}=\widehat{i}+\widehat{j}+2\widehat{k}\text{ and }\vec{w}=2\widehat{i}+\widehat{j}+\widehat{k}\] .
\[\begin{align}
& \vec{u}\cdot \vec{w}=\left( 1\times 2+1\times 1+2\times 1 \right) \\
& \Rightarrow \vec{u}\cdot \vec{w}=2+1+2=5...(i) \\
\end{align}\]
Now, we have to find \[\left| {\vec{u}} \right|\] and \[\left| {\vec{w}} \right|\] .
We know that for a vector $\vec{a}={{a}_{1}}\widehat{i}+{{a}_{2}}\widehat{j}+{{a}_{3}}\widehat{k}$ ,
\[\left| {\vec{a}} \right|=\sqrt{{{a}_{1}}^{2}+{{a}_{2}}^{2}+{{a}_{3}}^{2}}\]
\[\begin{align}
& \Rightarrow \left| {\vec{u}} \right|=\sqrt{{{1}^{2}}+{{1}^{2}}+{{2}^{2}}}=\sqrt{1+1+4}=\sqrt{6}...\left( ii \right) \\
& \left| {\vec{w}} \right|=\sqrt{{{2}^{2}}+{{1}^{2}}+{{1}^{2}}}=\sqrt{4+1+1}=\sqrt{6}...\left( iii \right) \\
\end{align}\]
Now, we can substitute (i), (ii) and (iii) in (a).
\[\Rightarrow \cos \theta =\dfrac{5}{\sqrt{6}\times \sqrt{6}}=\dfrac{5}{6}\]
Now, let us find the angle between $\vec{u}$ and $\vec{w}$ for $\lambda =4$
First, we have to find \[\vec{u}\cdot \vec{w}\] where, \[\overrightarrow{u}=\widehat{i}+\widehat{j}+4\widehat{k}\text{ and }\vec{w}=2\widehat{i}+\widehat{j}+\widehat{k}\]
\[\begin{align}
& \vec{u}\cdot \vec{w}=\left( 1\times 2+1\times 1+4\times 1 \right) \\
& \Rightarrow \vec{u}\cdot \vec{w}=2+1+4=7...(iv) \\
\end{align}\]
Now, we have to find \[\left| {\vec{u}} \right|\] and \[\left| {\vec{w}} \right|\] .
\[\begin{align}
& \Rightarrow \left| {\vec{u}} \right|=\sqrt{{{1}^{2}}+{{1}^{2}}+{{4}^{2}}}=\sqrt{18}=3\sqrt{2}...\left( v \right) \\
& \left| {\vec{w}} \right|=\sqrt{{{2}^{2}}+{{1}^{2}}+{{1}^{2}}}=\sqrt{4+1+1}=\sqrt{6}...\left( vi \right) \\
\end{align}\]
Now, we can substitute (iv), (v) and (vi) in (a).
\[\begin{align}
& \Rightarrow \cos \theta =\dfrac{7}{3\sqrt{2}\times \sqrt{6}}=\dfrac{7}{3\sqrt{12}} \\
& \Rightarrow \cos \theta =\dfrac{7}{3\times 2\sqrt{3}}=\dfrac{7}{6\sqrt{3}} \\
\end{align}\]
We got two values, that is, \[\cos \theta =\dfrac{5}{6},\dfrac{7}{6\sqrt{3}}\] .
Hence, the correct option is D.
Note: You may make a mistake by finding the value of $\lambda $ for only $+1$ . You may make mistake by writing the formula for \[\cos \theta \] as \[\dfrac{\vec{a}\times \vec{b}}{\left| {\vec{a}} \right|\left| {\vec{b}} \right|}\] . Also, errors can be made when finding the dot product as \[\vec{a}\cdot \vec{b}=\sqrt{{{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}}\] and the magnitude of vectors as \[\left| {\vec{a}} \right|={{a}_{1}}^{2}+{{a}_{2}}^{2}+{{a}_{3}}^{2}\] . You must know how to solve the determinants in order to proceed further.
1 & 1 & \lambda \\
1 & 1 & 3 \\
2 & 1 & 1 \\
\end{matrix} \right|=\pm 1$ . We will find the value of $\lambda $ for 1 and -1 by expanding the determinant. Then, we will substitute these values in $\vec{u}$ for each values of $\lambda $ and find angle between vectors $\text{\vec{u} and \vec{w}}$ for each case using \[\cos \theta =\dfrac{\vec{u}\cdot \vec{w}}{\left| {\vec{u}} \right|\left| {\vec{w}} \right|}\].
Complete step-by-step solution:
We are given that the edges of parallelepiped are \[\overrightarrow{u}=\widehat{i}+\widehat{j}+\lambda \widehat{k},\vec{v}=\widehat{i}+\widehat{j}+3\widehat{k}\text{ and }\vec{w}=2\widehat{i}+\widehat{j}+\widehat{k}\] and the volume is 1 cu.unit. The figure below shows the parallelepiped.

We know that for a parallelepiped of edges $\vec{a}={{a}_{1}}\widehat{i}+{{a}_{2}}\widehat{j}+{{a}_{3}}\widehat{k},\text{ }\vec{b}={{b}_{1}}\widehat{i}+{{b}_{2}}\widehat{j}+{{b}_{3}}\widehat{k}\text{ }$ and $\vec{c}={{c}_{1}}\widehat{i}+{{c}_{2}}\widehat{j}+{{c}_{3}}\widehat{k}$ , volume is given by
$\left| \left( \vec{a}\times \vec{b} \right).\vec{c} \right|=\left[ \vec{a}\vec{b}\vec{c} \right]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$
Now, let’s write the volume of parallelepiped for given edges.
Volume $=\left| \begin{matrix}
1 & 1 & \lambda \\
1 & 1 & 3 \\
2 & 1 & 1 \\
\end{matrix} \right|$
We are given that volume is 1 cu. unit. We will take $\pm 1$Hence,
$\left| \begin{matrix}
1 & 1 & \lambda \\
1 & 1 & 3 \\
2 & 1 & 1 \\
\end{matrix} \right|=\pm 1$
Let us solve the determinant.
$1\left( 1-3 \right)-1\left( 1-6 \right)+\lambda \left( 1-2 \right)=\pm 1...\left( i \right)$
Let’s solve this to find the value of $\lambda $ for $+1$ .
\[\begin{align}
& 1\times -2-1\times -5-\lambda =1 \\
& \Rightarrow -2+5-\lambda =1 \\
& \Rightarrow 3-\lambda =1 \\
\end{align}\]
Let’s collect constants on RHS. We will get
\[\begin{align}
& \Rightarrow -\lambda =1-3 \\
& \Rightarrow -\lambda =-2 \\
& \Rightarrow \lambda =2 \\
\end{align}\]
Now, let us solve (i) to find the value of $\lambda $ for $-1$ .
\[\begin{align}
& 1\times -2-1\times -5-\lambda =-1 \\
& \Rightarrow -2+5-\lambda =-1 \\
& \Rightarrow 3-\lambda =-1 \\
\end{align}\]
Let’s collect constants on RHS. We will get
\[\begin{align}
& \Rightarrow -\lambda =-1-3 \\
& \Rightarrow -\lambda =-4 \\
& \Rightarrow \lambda =4 \\
\end{align}\]
Now, we have to find the angle between $\vec{u}$ and $\vec{w}$ for $\lambda =2$ .
We know that angle between any two vectors $\vec{a}\text{ and }\vec{b}$ is given by
\[\cos \theta =\dfrac{\vec{a}\cdot \vec{b}}{\left| {\vec{a}} \right|\left| {\vec{b}} \right|}\]
Hence, angle between vectors $\text{\vec{u} and \vec{w}}$ is given by
\[\cos \theta =\dfrac{\vec{u}\cdot \vec{w}}{\left| {\vec{u}} \right|\left| {\vec{w}} \right|}...\left( a \right)\]
Let us find \[\vec{u}\cdot \vec{w}\] .
We know that for two vectors $\vec{a}={{a}_{1}}\widehat{i}+{{a}_{2}}\widehat{j}+{{a}_{3}}\widehat{k},\text{ }\vec{b}={{b}_{1}}\widehat{i}+{{b}_{2}}\widehat{j}+{{b}_{3}}\widehat{k}\text{ }$ , dot product is found as follows.
$\begin{align}
& \vec{a}\cdot \vec{b}=\left( {{a}_{1}}\widehat{i}+{{a}_{2}}\widehat{j}+{{a}_{3}}\widehat{k} \right)\cdot \left( {{b}_{1}}\widehat{i}+{{b}_{2}}\widehat{j}+{{b}_{3}}\widehat{k}\text{ } \right) \\
& \Rightarrow \vec{a}\cdot \vec{b}=\left( {{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}} \right) \\
\end{align}$
Now, we can find \[\vec{u}\cdot \vec{w}\] where, \[\overrightarrow{u}=\widehat{i}+\widehat{j}+2\widehat{k}\text{ and }\vec{w}=2\widehat{i}+\widehat{j}+\widehat{k}\] .
\[\begin{align}
& \vec{u}\cdot \vec{w}=\left( 1\times 2+1\times 1+2\times 1 \right) \\
& \Rightarrow \vec{u}\cdot \vec{w}=2+1+2=5...(i) \\
\end{align}\]
Now, we have to find \[\left| {\vec{u}} \right|\] and \[\left| {\vec{w}} \right|\] .
We know that for a vector $\vec{a}={{a}_{1}}\widehat{i}+{{a}_{2}}\widehat{j}+{{a}_{3}}\widehat{k}$ ,
\[\left| {\vec{a}} \right|=\sqrt{{{a}_{1}}^{2}+{{a}_{2}}^{2}+{{a}_{3}}^{2}}\]
\[\begin{align}
& \Rightarrow \left| {\vec{u}} \right|=\sqrt{{{1}^{2}}+{{1}^{2}}+{{2}^{2}}}=\sqrt{1+1+4}=\sqrt{6}...\left( ii \right) \\
& \left| {\vec{w}} \right|=\sqrt{{{2}^{2}}+{{1}^{2}}+{{1}^{2}}}=\sqrt{4+1+1}=\sqrt{6}...\left( iii \right) \\
\end{align}\]
Now, we can substitute (i), (ii) and (iii) in (a).
\[\Rightarrow \cos \theta =\dfrac{5}{\sqrt{6}\times \sqrt{6}}=\dfrac{5}{6}\]
Now, let us find the angle between $\vec{u}$ and $\vec{w}$ for $\lambda =4$
First, we have to find \[\vec{u}\cdot \vec{w}\] where, \[\overrightarrow{u}=\widehat{i}+\widehat{j}+4\widehat{k}\text{ and }\vec{w}=2\widehat{i}+\widehat{j}+\widehat{k}\]
\[\begin{align}
& \vec{u}\cdot \vec{w}=\left( 1\times 2+1\times 1+4\times 1 \right) \\
& \Rightarrow \vec{u}\cdot \vec{w}=2+1+4=7...(iv) \\
\end{align}\]
Now, we have to find \[\left| {\vec{u}} \right|\] and \[\left| {\vec{w}} \right|\] .
\[\begin{align}
& \Rightarrow \left| {\vec{u}} \right|=\sqrt{{{1}^{2}}+{{1}^{2}}+{{4}^{2}}}=\sqrt{18}=3\sqrt{2}...\left( v \right) \\
& \left| {\vec{w}} \right|=\sqrt{{{2}^{2}}+{{1}^{2}}+{{1}^{2}}}=\sqrt{4+1+1}=\sqrt{6}...\left( vi \right) \\
\end{align}\]
Now, we can substitute (iv), (v) and (vi) in (a).
\[\begin{align}
& \Rightarrow \cos \theta =\dfrac{7}{3\sqrt{2}\times \sqrt{6}}=\dfrac{7}{3\sqrt{12}} \\
& \Rightarrow \cos \theta =\dfrac{7}{3\times 2\sqrt{3}}=\dfrac{7}{6\sqrt{3}} \\
\end{align}\]
We got two values, that is, \[\cos \theta =\dfrac{5}{6},\dfrac{7}{6\sqrt{3}}\] .
Hence, the correct option is D.
Note: You may make a mistake by finding the value of $\lambda $ for only $+1$ . You may make mistake by writing the formula for \[\cos \theta \] as \[\dfrac{\vec{a}\times \vec{b}}{\left| {\vec{a}} \right|\left| {\vec{b}} \right|}\] . Also, errors can be made when finding the dot product as \[\vec{a}\cdot \vec{b}=\sqrt{{{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}}\] and the magnitude of vectors as \[\left| {\vec{a}} \right|={{a}_{1}}^{2}+{{a}_{2}}^{2}+{{a}_{3}}^{2}\] . You must know how to solve the determinants in order to proceed further.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
