
Let the volume of a parallelepiped whose coterminous edges are given by \[\overrightarrow{u}=\widehat{i}+\widehat{j}+\lambda \widehat{k},\vec{v}=\widehat{i}+\widehat{j}+3\widehat{k}\text{ and }\vec{w}=2\widehat{i}+\widehat{j}+\widehat{k}\] be 1 cu. units. If $\theta $ be the angle between the edge $\vec{u}$ and $\vec{w}$ , then $\cos \theta $ can be :
A. $\dfrac{5}{7}$
B. $\dfrac{5}{3\sqrt{3}}$
C. $\dfrac{7}{6\sqrt{6}}$
D. $\dfrac{7}{6\sqrt{3}}$
Answer
562.8k+ views
Hint: We are given that the volume of parallelepiped with given edges is 1 cu.unit. We can write it as Volume $=\left| \left( u\times \vec{v} \right).w \right|=\left[ \vec{u}\vec{v}\vec{w} \right]=\left| \begin{matrix}
1 & 1 & \lambda \\
1 & 1 & 3 \\
2 & 1 & 1 \\
\end{matrix} \right|=\pm 1$ . We will find the value of $\lambda $ for 1 and -1 by expanding the determinant. Then, we will substitute these values in $\vec{u}$ for each values of $\lambda $ and find angle between vectors $\text{\vec{u} and \vec{w}}$ for each case using \[\cos \theta =\dfrac{\vec{u}\cdot \vec{w}}{\left| {\vec{u}} \right|\left| {\vec{w}} \right|}\].
Complete step-by-step solution:
We are given that the edges of parallelepiped are \[\overrightarrow{u}=\widehat{i}+\widehat{j}+\lambda \widehat{k},\vec{v}=\widehat{i}+\widehat{j}+3\widehat{k}\text{ and }\vec{w}=2\widehat{i}+\widehat{j}+\widehat{k}\] and the volume is 1 cu.unit. The figure below shows the parallelepiped.
We know that for a parallelepiped of edges $\vec{a}={{a}_{1}}\widehat{i}+{{a}_{2}}\widehat{j}+{{a}_{3}}\widehat{k},\text{ }\vec{b}={{b}_{1}}\widehat{i}+{{b}_{2}}\widehat{j}+{{b}_{3}}\widehat{k}\text{ }$ and $\vec{c}={{c}_{1}}\widehat{i}+{{c}_{2}}\widehat{j}+{{c}_{3}}\widehat{k}$ , volume is given by
$\left| \left( \vec{a}\times \vec{b} \right).\vec{c} \right|=\left[ \vec{a}\vec{b}\vec{c} \right]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$
Now, let’s write the volume of parallelepiped for given edges.
Volume $=\left| \begin{matrix}
1 & 1 & \lambda \\
1 & 1 & 3 \\
2 & 1 & 1 \\
\end{matrix} \right|$
We are given that volume is 1 cu. unit. We will take $\pm 1$Hence,
$\left| \begin{matrix}
1 & 1 & \lambda \\
1 & 1 & 3 \\
2 & 1 & 1 \\
\end{matrix} \right|=\pm 1$
Let us solve the determinant.
$1\left( 1-3 \right)-1\left( 1-6 \right)+\lambda \left( 1-2 \right)=\pm 1...\left( i \right)$
Let’s solve this to find the value of $\lambda $ for $+1$ .
\[\begin{align}
& 1\times -2-1\times -5-\lambda =1 \\
& \Rightarrow -2+5-\lambda =1 \\
& \Rightarrow 3-\lambda =1 \\
\end{align}\]
Let’s collect constants on RHS. We will get
\[\begin{align}
& \Rightarrow -\lambda =1-3 \\
& \Rightarrow -\lambda =-2 \\
& \Rightarrow \lambda =2 \\
\end{align}\]
Now, let us solve (i) to find the value of $\lambda $ for $-1$ .
\[\begin{align}
& 1\times -2-1\times -5-\lambda =-1 \\
& \Rightarrow -2+5-\lambda =-1 \\
& \Rightarrow 3-\lambda =-1 \\
\end{align}\]
Let’s collect constants on RHS. We will get
\[\begin{align}
& \Rightarrow -\lambda =-1-3 \\
& \Rightarrow -\lambda =-4 \\
& \Rightarrow \lambda =4 \\
\end{align}\]
Now, we have to find the angle between $\vec{u}$ and $\vec{w}$ for $\lambda =2$ .
We know that angle between any two vectors $\vec{a}\text{ and }\vec{b}$ is given by
\[\cos \theta =\dfrac{\vec{a}\cdot \vec{b}}{\left| {\vec{a}} \right|\left| {\vec{b}} \right|}\]
Hence, angle between vectors $\text{\vec{u} and \vec{w}}$ is given by
\[\cos \theta =\dfrac{\vec{u}\cdot \vec{w}}{\left| {\vec{u}} \right|\left| {\vec{w}} \right|}...\left( a \right)\]
Let us find \[\vec{u}\cdot \vec{w}\] .
We know that for two vectors $\vec{a}={{a}_{1}}\widehat{i}+{{a}_{2}}\widehat{j}+{{a}_{3}}\widehat{k},\text{ }\vec{b}={{b}_{1}}\widehat{i}+{{b}_{2}}\widehat{j}+{{b}_{3}}\widehat{k}\text{ }$ , dot product is found as follows.
$\begin{align}
& \vec{a}\cdot \vec{b}=\left( {{a}_{1}}\widehat{i}+{{a}_{2}}\widehat{j}+{{a}_{3}}\widehat{k} \right)\cdot \left( {{b}_{1}}\widehat{i}+{{b}_{2}}\widehat{j}+{{b}_{3}}\widehat{k}\text{ } \right) \\
& \Rightarrow \vec{a}\cdot \vec{b}=\left( {{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}} \right) \\
\end{align}$
Now, we can find \[\vec{u}\cdot \vec{w}\] where, \[\overrightarrow{u}=\widehat{i}+\widehat{j}+2\widehat{k}\text{ and }\vec{w}=2\widehat{i}+\widehat{j}+\widehat{k}\] .
\[\begin{align}
& \vec{u}\cdot \vec{w}=\left( 1\times 2+1\times 1+2\times 1 \right) \\
& \Rightarrow \vec{u}\cdot \vec{w}=2+1+2=5...(i) \\
\end{align}\]
Now, we have to find \[\left| {\vec{u}} \right|\] and \[\left| {\vec{w}} \right|\] .
We know that for a vector $\vec{a}={{a}_{1}}\widehat{i}+{{a}_{2}}\widehat{j}+{{a}_{3}}\widehat{k}$ ,
\[\left| {\vec{a}} \right|=\sqrt{{{a}_{1}}^{2}+{{a}_{2}}^{2}+{{a}_{3}}^{2}}\]
\[\begin{align}
& \Rightarrow \left| {\vec{u}} \right|=\sqrt{{{1}^{2}}+{{1}^{2}}+{{2}^{2}}}=\sqrt{1+1+4}=\sqrt{6}...\left( ii \right) \\
& \left| {\vec{w}} \right|=\sqrt{{{2}^{2}}+{{1}^{2}}+{{1}^{2}}}=\sqrt{4+1+1}=\sqrt{6}...\left( iii \right) \\
\end{align}\]
Now, we can substitute (i), (ii) and (iii) in (a).
\[\Rightarrow \cos \theta =\dfrac{5}{\sqrt{6}\times \sqrt{6}}=\dfrac{5}{6}\]
Now, let us find the angle between $\vec{u}$ and $\vec{w}$ for $\lambda =4$
First, we have to find \[\vec{u}\cdot \vec{w}\] where, \[\overrightarrow{u}=\widehat{i}+\widehat{j}+4\widehat{k}\text{ and }\vec{w}=2\widehat{i}+\widehat{j}+\widehat{k}\]
\[\begin{align}
& \vec{u}\cdot \vec{w}=\left( 1\times 2+1\times 1+4\times 1 \right) \\
& \Rightarrow \vec{u}\cdot \vec{w}=2+1+4=7...(iv) \\
\end{align}\]
Now, we have to find \[\left| {\vec{u}} \right|\] and \[\left| {\vec{w}} \right|\] .
\[\begin{align}
& \Rightarrow \left| {\vec{u}} \right|=\sqrt{{{1}^{2}}+{{1}^{2}}+{{4}^{2}}}=\sqrt{18}=3\sqrt{2}...\left( v \right) \\
& \left| {\vec{w}} \right|=\sqrt{{{2}^{2}}+{{1}^{2}}+{{1}^{2}}}=\sqrt{4+1+1}=\sqrt{6}...\left( vi \right) \\
\end{align}\]
Now, we can substitute (iv), (v) and (vi) in (a).
\[\begin{align}
& \Rightarrow \cos \theta =\dfrac{7}{3\sqrt{2}\times \sqrt{6}}=\dfrac{7}{3\sqrt{12}} \\
& \Rightarrow \cos \theta =\dfrac{7}{3\times 2\sqrt{3}}=\dfrac{7}{6\sqrt{3}} \\
\end{align}\]
We got two values, that is, \[\cos \theta =\dfrac{5}{6},\dfrac{7}{6\sqrt{3}}\] .
Hence, the correct option is D.
Note: You may make a mistake by finding the value of $\lambda $ for only $+1$ . You may make mistake by writing the formula for \[\cos \theta \] as \[\dfrac{\vec{a}\times \vec{b}}{\left| {\vec{a}} \right|\left| {\vec{b}} \right|}\] . Also, errors can be made when finding the dot product as \[\vec{a}\cdot \vec{b}=\sqrt{{{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}}\] and the magnitude of vectors as \[\left| {\vec{a}} \right|={{a}_{1}}^{2}+{{a}_{2}}^{2}+{{a}_{3}}^{2}\] . You must know how to solve the determinants in order to proceed further.
1 & 1 & \lambda \\
1 & 1 & 3 \\
2 & 1 & 1 \\
\end{matrix} \right|=\pm 1$ . We will find the value of $\lambda $ for 1 and -1 by expanding the determinant. Then, we will substitute these values in $\vec{u}$ for each values of $\lambda $ and find angle between vectors $\text{\vec{u} and \vec{w}}$ for each case using \[\cos \theta =\dfrac{\vec{u}\cdot \vec{w}}{\left| {\vec{u}} \right|\left| {\vec{w}} \right|}\].
Complete step-by-step solution:
We are given that the edges of parallelepiped are \[\overrightarrow{u}=\widehat{i}+\widehat{j}+\lambda \widehat{k},\vec{v}=\widehat{i}+\widehat{j}+3\widehat{k}\text{ and }\vec{w}=2\widehat{i}+\widehat{j}+\widehat{k}\] and the volume is 1 cu.unit. The figure below shows the parallelepiped.
We know that for a parallelepiped of edges $\vec{a}={{a}_{1}}\widehat{i}+{{a}_{2}}\widehat{j}+{{a}_{3}}\widehat{k},\text{ }\vec{b}={{b}_{1}}\widehat{i}+{{b}_{2}}\widehat{j}+{{b}_{3}}\widehat{k}\text{ }$ and $\vec{c}={{c}_{1}}\widehat{i}+{{c}_{2}}\widehat{j}+{{c}_{3}}\widehat{k}$ , volume is given by
$\left| \left( \vec{a}\times \vec{b} \right).\vec{c} \right|=\left[ \vec{a}\vec{b}\vec{c} \right]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|$
Now, let’s write the volume of parallelepiped for given edges.
Volume $=\left| \begin{matrix}
1 & 1 & \lambda \\
1 & 1 & 3 \\
2 & 1 & 1 \\
\end{matrix} \right|$
We are given that volume is 1 cu. unit. We will take $\pm 1$Hence,
$\left| \begin{matrix}
1 & 1 & \lambda \\
1 & 1 & 3 \\
2 & 1 & 1 \\
\end{matrix} \right|=\pm 1$
Let us solve the determinant.
$1\left( 1-3 \right)-1\left( 1-6 \right)+\lambda \left( 1-2 \right)=\pm 1...\left( i \right)$
Let’s solve this to find the value of $\lambda $ for $+1$ .
\[\begin{align}
& 1\times -2-1\times -5-\lambda =1 \\
& \Rightarrow -2+5-\lambda =1 \\
& \Rightarrow 3-\lambda =1 \\
\end{align}\]
Let’s collect constants on RHS. We will get
\[\begin{align}
& \Rightarrow -\lambda =1-3 \\
& \Rightarrow -\lambda =-2 \\
& \Rightarrow \lambda =2 \\
\end{align}\]
Now, let us solve (i) to find the value of $\lambda $ for $-1$ .
\[\begin{align}
& 1\times -2-1\times -5-\lambda =-1 \\
& \Rightarrow -2+5-\lambda =-1 \\
& \Rightarrow 3-\lambda =-1 \\
\end{align}\]
Let’s collect constants on RHS. We will get
\[\begin{align}
& \Rightarrow -\lambda =-1-3 \\
& \Rightarrow -\lambda =-4 \\
& \Rightarrow \lambda =4 \\
\end{align}\]
Now, we have to find the angle between $\vec{u}$ and $\vec{w}$ for $\lambda =2$ .
We know that angle between any two vectors $\vec{a}\text{ and }\vec{b}$ is given by
\[\cos \theta =\dfrac{\vec{a}\cdot \vec{b}}{\left| {\vec{a}} \right|\left| {\vec{b}} \right|}\]
Hence, angle between vectors $\text{\vec{u} and \vec{w}}$ is given by
\[\cos \theta =\dfrac{\vec{u}\cdot \vec{w}}{\left| {\vec{u}} \right|\left| {\vec{w}} \right|}...\left( a \right)\]
Let us find \[\vec{u}\cdot \vec{w}\] .
We know that for two vectors $\vec{a}={{a}_{1}}\widehat{i}+{{a}_{2}}\widehat{j}+{{a}_{3}}\widehat{k},\text{ }\vec{b}={{b}_{1}}\widehat{i}+{{b}_{2}}\widehat{j}+{{b}_{3}}\widehat{k}\text{ }$ , dot product is found as follows.
$\begin{align}
& \vec{a}\cdot \vec{b}=\left( {{a}_{1}}\widehat{i}+{{a}_{2}}\widehat{j}+{{a}_{3}}\widehat{k} \right)\cdot \left( {{b}_{1}}\widehat{i}+{{b}_{2}}\widehat{j}+{{b}_{3}}\widehat{k}\text{ } \right) \\
& \Rightarrow \vec{a}\cdot \vec{b}=\left( {{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}} \right) \\
\end{align}$
Now, we can find \[\vec{u}\cdot \vec{w}\] where, \[\overrightarrow{u}=\widehat{i}+\widehat{j}+2\widehat{k}\text{ and }\vec{w}=2\widehat{i}+\widehat{j}+\widehat{k}\] .
\[\begin{align}
& \vec{u}\cdot \vec{w}=\left( 1\times 2+1\times 1+2\times 1 \right) \\
& \Rightarrow \vec{u}\cdot \vec{w}=2+1+2=5...(i) \\
\end{align}\]
Now, we have to find \[\left| {\vec{u}} \right|\] and \[\left| {\vec{w}} \right|\] .
We know that for a vector $\vec{a}={{a}_{1}}\widehat{i}+{{a}_{2}}\widehat{j}+{{a}_{3}}\widehat{k}$ ,
\[\left| {\vec{a}} \right|=\sqrt{{{a}_{1}}^{2}+{{a}_{2}}^{2}+{{a}_{3}}^{2}}\]
\[\begin{align}
& \Rightarrow \left| {\vec{u}} \right|=\sqrt{{{1}^{2}}+{{1}^{2}}+{{2}^{2}}}=\sqrt{1+1+4}=\sqrt{6}...\left( ii \right) \\
& \left| {\vec{w}} \right|=\sqrt{{{2}^{2}}+{{1}^{2}}+{{1}^{2}}}=\sqrt{4+1+1}=\sqrt{6}...\left( iii \right) \\
\end{align}\]
Now, we can substitute (i), (ii) and (iii) in (a).
\[\Rightarrow \cos \theta =\dfrac{5}{\sqrt{6}\times \sqrt{6}}=\dfrac{5}{6}\]
Now, let us find the angle between $\vec{u}$ and $\vec{w}$ for $\lambda =4$
First, we have to find \[\vec{u}\cdot \vec{w}\] where, \[\overrightarrow{u}=\widehat{i}+\widehat{j}+4\widehat{k}\text{ and }\vec{w}=2\widehat{i}+\widehat{j}+\widehat{k}\]
\[\begin{align}
& \vec{u}\cdot \vec{w}=\left( 1\times 2+1\times 1+4\times 1 \right) \\
& \Rightarrow \vec{u}\cdot \vec{w}=2+1+4=7...(iv) \\
\end{align}\]
Now, we have to find \[\left| {\vec{u}} \right|\] and \[\left| {\vec{w}} \right|\] .
\[\begin{align}
& \Rightarrow \left| {\vec{u}} \right|=\sqrt{{{1}^{2}}+{{1}^{2}}+{{4}^{2}}}=\sqrt{18}=3\sqrt{2}...\left( v \right) \\
& \left| {\vec{w}} \right|=\sqrt{{{2}^{2}}+{{1}^{2}}+{{1}^{2}}}=\sqrt{4+1+1}=\sqrt{6}...\left( vi \right) \\
\end{align}\]
Now, we can substitute (iv), (v) and (vi) in (a).
\[\begin{align}
& \Rightarrow \cos \theta =\dfrac{7}{3\sqrt{2}\times \sqrt{6}}=\dfrac{7}{3\sqrt{12}} \\
& \Rightarrow \cos \theta =\dfrac{7}{3\times 2\sqrt{3}}=\dfrac{7}{6\sqrt{3}} \\
\end{align}\]
We got two values, that is, \[\cos \theta =\dfrac{5}{6},\dfrac{7}{6\sqrt{3}}\] .
Hence, the correct option is D.
Note: You may make a mistake by finding the value of $\lambda $ for only $+1$ . You may make mistake by writing the formula for \[\cos \theta \] as \[\dfrac{\vec{a}\times \vec{b}}{\left| {\vec{a}} \right|\left| {\vec{b}} \right|}\] . Also, errors can be made when finding the dot product as \[\vec{a}\cdot \vec{b}=\sqrt{{{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}}\] and the magnitude of vectors as \[\left| {\vec{a}} \right|={{a}_{1}}^{2}+{{a}_{2}}^{2}+{{a}_{3}}^{2}\] . You must know how to solve the determinants in order to proceed further.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

