
Let the equations of two sides of a triangle be \[3x-2y+6=0\] and \[4x+5y-20=0\]. If the
orthocentre of this triangle is at \[(1,1)\], then the equation of its third side is
(a) \[122y-26x-1675=0\]
(b) \[26x+61y+1675=0\]
(c) \[122y+26x+1675=0\]
(d) \[26x-122y-1675=0\]
Answer
611.1k+ views
Hint: Find the slope of the given two lines and use this slope and given orthocentre to find the coordinates of the triangle.
The equations of the sides of a triangle given in the questions are,
\[3x-2y+6=0\] and \[4x+5y-20=0\]
The orthocentre of a triangle is the point where all the altitudes intersect. Its coordinates are given
in the question as \[(1,1)\]. Draw a triangle ABC with all the given data as shown below,
Consider the line AC. The slope of the line can be obtained by rearranging the equation as,
\[\begin{align}
& 4x+5y-20=0 \\
& 5y=20-4x \\
& y=-\dfrac{4}{5}x+4 \\
\end{align}\]
Comparing it with the general equation, \[y=mx+c\], we have the slope as \[-\dfrac{4}{5}\]. The slope
of perpendicular lines is related as \[m\times n=-1\]. Now since the line BR is perpendicular to the
line AC, the slope of BR would be \[\dfrac{5}{4}\].
The line BR has slope \[\dfrac{5}{4}\] and passes through the point \[(1,1)\]. The equation of a line
passing through point \[({{x}_{1}},{{y}_{1}})\] and having slope \[m\] is given by,\[y-{{y}_{1}}=m(x-
{{x}_{1}})\]. The equation of the line BR can hence be obtained as,
\[\begin{align}
& y-1=\dfrac{5}{4}(x-1) \\
& 4(y-1)=5(x-1) \\
& 4y-4=5x-5 \\
& 5x-4y-1=0 \\
\end{align}\]
Next, we have to consider line BC. The slope of the line can be obtained by rearranging the equation
as,
\[\begin{align}
& 3x-2y+6=0 \\
& -2y=-6-3x \\
& y=\dfrac{3}{2}x+3 \\
\end{align}\]
Comparing it with the general equation, \[y=mx+c\], we have the slope as \[\dfrac{3}{2}\]. The slope
of perpendicular lines is related as \[m\times n=-1\]. Now since the line AQ is perpendicular to the
line BC, the slope of AQ would be \[-\dfrac{2}{3}\].
The line AQ has slope \[-\dfrac{2}{3}\] and passes through the point \[(1,1)\]. The equation of a line
passing through point \[({{x}_{1}},{{y}_{1}})\] and having slope \[m\] is given by,\[y-{{y}_{1}}=m(x-
{{x}_{1}})\]. The equation of the line AQ can hence be obtained as,
\[\begin{align}
& y-1=-\dfrac{2}{3}(x-1) \\
& 3(y-1)=-2(x-1) \\
& 3y-3=-2x+2 \\
& 2x+3y-5=0 \\
\end{align}\]
The vertex A is passing through both lines AC and AQ. So, we can get the coordinates of vertex A by
solving the equations \[4x+5y-20=0\] and \[2x+3y-5=0\]. Multiplying the equation \[2x+3y-5=0\] by 2
and subtracting from the equation \[4x+5y-20=0\], we get,
\[\dfrac{\begin{align}
& 4x+5y-20=0 \\
& -4x-6y+10=0 \\
\end{align}}{\begin{align}
& -y-10=0 \\
& y=-10 \\
\end{align}}\]
Substituting the value of \[y\] in \[2x+3y-5=0\], we get,
\[\begin{align}
& 2x+(3\times -10)-5=0 \\
& 2x-30-5=0 \\
& 2x=35 \\
& x=\dfrac{35}{2} \\
\end{align}\]
Therefore, the coordinates of A are \[\left( \dfrac{35}{2},-10 \right)\].
The vertex B is passing through both lines BC and BR. So, we can get the coordinates of vertex B by
solving the equations \[3x-2y+6=0\] and \[5x-4y-1=0\] . Multiplying the equation \[3x-2y+6=0\] by 2
and subtracting the equation \[5x-4y-1=0\] from it, we get,
\[\dfrac{\begin{align}
& 6x-4y+12=0 \\
& -5x+4y+1=0 \\
\end{align}}{\begin{align}
& x+13=0 \\
& x=-13 \\
\end{align}}\]
Substituting the value of \[x\] in \[3x-2y+6=0\], we get,
\[\begin{align}
& (3\times -13)-2y+6=0 \\
& -39-2y+6=0 \\
& -2y=33 \\
& y=-\dfrac{33}{2} \\
\end{align}\]
Therefore, the coordinates of B are \[\left( -13,-\dfrac{33}{2} \right)\].
The equation of a line passing through two points \[({{x}_{1}},{{y}_{1}})\] and \[({{x}_{2}},{{y}_{2}})\] is
given by,
\[\begin{align}
& y-{{y}_{1}}=m(x-{{x}_{1}}) \\
& \Rightarrow y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\times (x-{{x}_{1}}) \\
\end{align}\]
The equation of line AB passing through points \[\left( \dfrac{35}{2},-10 \right)\] and \[\left( -13,-
\dfrac{33}{2} \right)\] can hence be found as,
\[\left( y+10 \right)=\dfrac{\left( -\dfrac{33}{2}+10 \right)}{\left( -13-\dfrac{35}{2} \right)}\times
\left( x-\dfrac{35}{2} \right)\]
Taking the LCM of the terms in the numerator and denominator,
\[\begin{align}
& y+10=\dfrac{-\dfrac{13}{2}}{-\dfrac{61}{2}}\times \left( x-\dfrac{35}{2} \right) \\
& y+10=\dfrac{13}{61}\times \left( x-\dfrac{35}{2} \right) \\
& 61(y+10)=13\left( x-\dfrac{35}{2} \right) \\
& 61y+610=13x-\dfrac{455}{2} \\
\end{align}\]
Multiplying both sides by 2,
\[\begin{align}
& 122y+1220=26x-455 \\
& 26x-122y-1675=0 \\
\end{align}\]
Therefore, the required equation of the straight line is \[26x-122y-1675=0\].
We get option (d) as the correct answer.
Note: There is one more way to approach this problem. The coordinates of the vertices A and B can
be taken as \[\left( p,\dfrac{20-4p}{5} \right)\] and \[\left( q,\dfrac{3+6q}{2} \right)\] by assuming
\[x\] as \[p\] and \[q\] respectively in the equations \[4x+5y-20=0\]and \[3x-2y+6=0\]. Then we can
formulate the equations using the slope of the lines and solve for \[p\] and \[q\]. The equation of AB
can then be obtained.
The equations of the sides of a triangle given in the questions are,
\[3x-2y+6=0\] and \[4x+5y-20=0\]
The orthocentre of a triangle is the point where all the altitudes intersect. Its coordinates are given
in the question as \[(1,1)\]. Draw a triangle ABC with all the given data as shown below,
Consider the line AC. The slope of the line can be obtained by rearranging the equation as,
\[\begin{align}
& 4x+5y-20=0 \\
& 5y=20-4x \\
& y=-\dfrac{4}{5}x+4 \\
\end{align}\]
Comparing it with the general equation, \[y=mx+c\], we have the slope as \[-\dfrac{4}{5}\]. The slope
of perpendicular lines is related as \[m\times n=-1\]. Now since the line BR is perpendicular to the
line AC, the slope of BR would be \[\dfrac{5}{4}\].
The line BR has slope \[\dfrac{5}{4}\] and passes through the point \[(1,1)\]. The equation of a line
passing through point \[({{x}_{1}},{{y}_{1}})\] and having slope \[m\] is given by,\[y-{{y}_{1}}=m(x-
{{x}_{1}})\]. The equation of the line BR can hence be obtained as,
\[\begin{align}
& y-1=\dfrac{5}{4}(x-1) \\
& 4(y-1)=5(x-1) \\
& 4y-4=5x-5 \\
& 5x-4y-1=0 \\
\end{align}\]
Next, we have to consider line BC. The slope of the line can be obtained by rearranging the equation
as,
\[\begin{align}
& 3x-2y+6=0 \\
& -2y=-6-3x \\
& y=\dfrac{3}{2}x+3 \\
\end{align}\]
Comparing it with the general equation, \[y=mx+c\], we have the slope as \[\dfrac{3}{2}\]. The slope
of perpendicular lines is related as \[m\times n=-1\]. Now since the line AQ is perpendicular to the
line BC, the slope of AQ would be \[-\dfrac{2}{3}\].
The line AQ has slope \[-\dfrac{2}{3}\] and passes through the point \[(1,1)\]. The equation of a line
passing through point \[({{x}_{1}},{{y}_{1}})\] and having slope \[m\] is given by,\[y-{{y}_{1}}=m(x-
{{x}_{1}})\]. The equation of the line AQ can hence be obtained as,
\[\begin{align}
& y-1=-\dfrac{2}{3}(x-1) \\
& 3(y-1)=-2(x-1) \\
& 3y-3=-2x+2 \\
& 2x+3y-5=0 \\
\end{align}\]
The vertex A is passing through both lines AC and AQ. So, we can get the coordinates of vertex A by
solving the equations \[4x+5y-20=0\] and \[2x+3y-5=0\]. Multiplying the equation \[2x+3y-5=0\] by 2
and subtracting from the equation \[4x+5y-20=0\], we get,
\[\dfrac{\begin{align}
& 4x+5y-20=0 \\
& -4x-6y+10=0 \\
\end{align}}{\begin{align}
& -y-10=0 \\
& y=-10 \\
\end{align}}\]
Substituting the value of \[y\] in \[2x+3y-5=0\], we get,
\[\begin{align}
& 2x+(3\times -10)-5=0 \\
& 2x-30-5=0 \\
& 2x=35 \\
& x=\dfrac{35}{2} \\
\end{align}\]
Therefore, the coordinates of A are \[\left( \dfrac{35}{2},-10 \right)\].
The vertex B is passing through both lines BC and BR. So, we can get the coordinates of vertex B by
solving the equations \[3x-2y+6=0\] and \[5x-4y-1=0\] . Multiplying the equation \[3x-2y+6=0\] by 2
and subtracting the equation \[5x-4y-1=0\] from it, we get,
\[\dfrac{\begin{align}
& 6x-4y+12=0 \\
& -5x+4y+1=0 \\
\end{align}}{\begin{align}
& x+13=0 \\
& x=-13 \\
\end{align}}\]
Substituting the value of \[x\] in \[3x-2y+6=0\], we get,
\[\begin{align}
& (3\times -13)-2y+6=0 \\
& -39-2y+6=0 \\
& -2y=33 \\
& y=-\dfrac{33}{2} \\
\end{align}\]
Therefore, the coordinates of B are \[\left( -13,-\dfrac{33}{2} \right)\].
The equation of a line passing through two points \[({{x}_{1}},{{y}_{1}})\] and \[({{x}_{2}},{{y}_{2}})\] is
given by,
\[\begin{align}
& y-{{y}_{1}}=m(x-{{x}_{1}}) \\
& \Rightarrow y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\times (x-{{x}_{1}}) \\
\end{align}\]
The equation of line AB passing through points \[\left( \dfrac{35}{2},-10 \right)\] and \[\left( -13,-
\dfrac{33}{2} \right)\] can hence be found as,
\[\left( y+10 \right)=\dfrac{\left( -\dfrac{33}{2}+10 \right)}{\left( -13-\dfrac{35}{2} \right)}\times
\left( x-\dfrac{35}{2} \right)\]
Taking the LCM of the terms in the numerator and denominator,
\[\begin{align}
& y+10=\dfrac{-\dfrac{13}{2}}{-\dfrac{61}{2}}\times \left( x-\dfrac{35}{2} \right) \\
& y+10=\dfrac{13}{61}\times \left( x-\dfrac{35}{2} \right) \\
& 61(y+10)=13\left( x-\dfrac{35}{2} \right) \\
& 61y+610=13x-\dfrac{455}{2} \\
\end{align}\]
Multiplying both sides by 2,
\[\begin{align}
& 122y+1220=26x-455 \\
& 26x-122y-1675=0 \\
\end{align}\]
Therefore, the required equation of the straight line is \[26x-122y-1675=0\].
We get option (d) as the correct answer.
Note: There is one more way to approach this problem. The coordinates of the vertices A and B can
be taken as \[\left( p,\dfrac{20-4p}{5} \right)\] and \[\left( q,\dfrac{3+6q}{2} \right)\] by assuming
\[x\] as \[p\] and \[q\] respectively in the equations \[4x+5y-20=0\]and \[3x-2y+6=0\]. Then we can
formulate the equations using the slope of the lines and solve for \[p\] and \[q\]. The equation of AB
can then be obtained.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

