Answer

Verified

447.9k+ views

**Hint:**Equation of chord of contact of tangent from point $({{x}_{1}},{{y}_{1}})$ where $({{x}_{1}},{{y}_{1}})$ lies outside the ellipse is $\dfrac{x{{x}_{1}}^{{}}}{{{a}^{2}}}+\dfrac{y{{y}_{1}}}{{{b}^{2}}}=1$ . This equation of chord is the tangent to the circle. So if $y=mx+c$ where m is the slope of line and c is the y-intercept, is the tangent to the circle ${{x}^{2}}+{{y}^{2}}={{a}^{2}}$ with radius $a$ then the radius of circle is given by $a=\dfrac{\left| c \right|}{\sqrt{1+{{m}^{2}}}}$.

**Complete step by step answer:**

Standard equation of circle is ${{(x-a)}^{2}}+{{(y-b)}^{2}}={{r}^{2}}$ where $(a,b)$ is the center of the circle and $r$ is the radius of the given circle.

In the given question we are given a circle ${{x}^{2}}+{{y}^{2}}=100$ , whose center is (0,0) and radius = 10. And $\dfrac{{{x}^{2}}}{4}+\dfrac{{{y}^{2}}}{9}=1$ is a given ellipse having major axis in the y-axis direction. Graph of the circle and ellipse is given below.

Equation of chord of contact of tangent from point $({{x}_{1}},{{y}_{1}})$ where $({{x}_{1}},{{y}_{1}})$ lies outside the ellipse$\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ is $\dfrac{x{{x}_{1}}^{{}}}{{{a}^{2}}}+\dfrac{y{{y}_{1}}}{{{b}^{2}}}=1$.Let $(h,k)$ be the point outside the ellipse then equation of chord of contact of tangent from point A$(h,k)$ to ellipse $\dfrac{{{x}^{2}}}{4}+\dfrac{{{y}^{2}}}{9}=1$ is $\dfrac{hx}{4}+\dfrac{ky}{9}=1.............(1)$.

This chord is the tangent to the circle. If $y=mx+c...........(2)$ where m is the slope of line and c is the y-intercept, is the tangent to the circle ${{x}^{2}}+{{y}^{2}}={{a}^{2}}$ with radius $a$ then the radius of circle is given by $a=\dfrac{\left| c \right|}{\sqrt{1+{{m}^{2}}}}............(3)$.

Let $p=\dfrac{h}{4}$ ,$q=\dfrac{k}{9}$ and $r=1$ then equation (1) can be written as

\[\Rightarrow px+qy=r\].

$\Rightarrow qy=r-px$.

$\Rightarrow y=\dfrac{r}{q}-\dfrac{px}{q}$.

Comparing equation (2) and (4) we get $m=\dfrac{-p}{q}$ and $c=\dfrac{r}{q}$. Putting these value in equation (3) we get $\begin{align}

& a=\dfrac{\left| \left( \dfrac{r}{q} \right) \right|}{\sqrt{1+{{\left( \dfrac{-p}{q} \right)}^{2}}}} \\

& \\

\end{align}$.

Squaring on both sides we get,

$\Rightarrow {{a}^{2}}={{\left( \dfrac{\left| \left( \dfrac{r}{q} \right) \right|}{\sqrt{1+{{\left( \dfrac{-p}{q} \right)}^{2}}}} \right)}^{2}}$.

\[\Rightarrow {{a}^{2}}=\dfrac{{{\left( \dfrac{r}{q} \right)}^{2}}}{1+{{\left( \dfrac{-p}{q} \right)}^{2}}}\].

$\Rightarrow {{a}^{2}}=\dfrac{1}{\left( \dfrac{1+{{\left( \dfrac{-p}{q} \right)}^{2}}}{{{\left( \dfrac{r}{q} \right)}^{2}}} \right)}$.

$\Rightarrow {{a}^{2}}=\dfrac{1}{{{\left( \dfrac{q}{r} \right)}^{2}}+{{\left( \dfrac{p}{r} \right)}^{2}}}...............(5)$.

Here $r=1$ so equation (5) becomes ${{a}^{2}}=\dfrac{1}{{{q}^{2}}+{{p}^{2}}}...........(6)$.

We know that the radius of circle ${{x}^{2}}+{{y}^{2}}=100$ is 10 so here $a$ is 10. Putting the values of $a=10$, $p=\dfrac{h}{4}$ and$q=\dfrac{k}{9}$ in equation (6) we get

$\Rightarrow 100=\left( \dfrac{1}{\dfrac{{{h}^{2}}}{16}+\dfrac{{{k}^{2}}}{81}} \right)$.

$\Rightarrow \dfrac{{{h}^{2}}}{16}+\dfrac{{{k}^{2}}}{81}=\dfrac{1}{100}$.

$\Rightarrow \dfrac{100{{h}^{2}}}{16}+\dfrac{100{{k}^{2}}}{81}=1$.

$\Rightarrow \dfrac{{{h}^{2}}}{\left( \dfrac{16}{100} \right)}+\dfrac{{{k}^{2}}}{\left( \dfrac{81}{100} \right)}=1.............(7)$.

Standard equation of ellipse is given as $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ here we got $b < a$, comparing this equation with (7) we get ${{b}^{2}}=\dfrac{81}{100}$ and ${{a}^{2}}=\dfrac{16}{100}$.

Eccentricity is given by formula, $e=\dfrac{c}{b}..........(8)$, where $c=\sqrt{{{b}^{2}}-{{a}^{2}}}$.

$\Rightarrow c=\sqrt{\dfrac{81}{100}-\dfrac{16}{100}}$.

$\Rightarrow c=\sqrt{\dfrac{81-16}{100}}$.

$\Rightarrow c=\dfrac{\sqrt{65}}{10}$.

Putting the value of c and a in equation (8) we get,

$\Rightarrow e=\dfrac{\left( \dfrac{\sqrt{65}}{10} \right)}{\left( \dfrac{9}{10} \right)}$.

$\Rightarrow e=\dfrac{\sqrt{65}}{9}$.

Therefore,

$\dfrac{81{{e}^{2}}}{13}=\dfrac{81}{13}\times \dfrac{65}{81}$.

$\dfrac{81{{e}^{2}}}{13}=\dfrac{65}{13}$.

$\dfrac{81{{e}^{2}}}{13}=5$.

**Hence the value of $\dfrac{81{{e}^{2}}}{13}$ is 5.**

**Note:**

We need not always get the equation of ellipse as $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1$ where $a>b$. We should know that the equation of the ellipse depends on the condition given in the problem. We should not confuse it with eccentricity while solving this problem. We can also solve this problem by taking the equation of common chords at the points $\left( 0,10 \right)$ and $\left( 10,0 \right)$ of the points which gives us the values of a and b directly.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Derive an expression for drift velocity of free electrons class 12 physics CBSE

Which are the Top 10 Largest Countries of the World?

Write down 5 differences between Ntype and Ptype s class 11 physics CBSE

The energy of a charged conductor is given by the expression class 12 physics CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Derive an expression for electric field intensity due class 12 physics CBSE

How do you graph the function fx 4x class 9 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Derive an expression for electric potential at point class 12 physics CBSE